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A B S T R A C T   

This study presents a novel numerical method to simulate the time-dependent behavior of con
crete materials. The deformation response of both traditional and fractional calculus (FC) 
viscoelastic models is analyzed by the proposed method, in which models’ one-dimensional 
constitutive relationships are extended to the three-dimensional form. By applying numerical 
and finite difference methods based on Caputo-type fractional integration, the stress-strain 
behavior of the FC viscoelastic model is discretized over the time scale. This method exhibits 
broad application prospects, and can be employed to represent various forms of viscoelastic 
models. For the concrete material, suitable FC viscoelastic models are developed. To facilitate 
practical engineering applications of the proposed model, a numerical solution algorithm is 
implemented in the finite element (FE) analysis through the User-defined Material Mechanical 
Behavior (UMAT) interface of the commercial FE software ABAQUS. Finally, FE results are 
compared with the experimental results from several concrete creep tests. The consistency be
tween the FE results and experimental data confirms the effectiveness of the proposed model in 
describing concrete behavior. The proposed method and model provide theoretical and numerical 
support for a more profound understanding and simulation of the time-dependent deformation of 
RC specimens in practical engineering applications.   

1. Introduction 

As a commonly used construction material, concrete has obtained widespread application in various infrastructure and building 
projects due to its superior strength and durability. However, under prolonged loading conditions, concrete exhibits a gradually 
evolving deformation behavior known as creep. A profound understanding of the creep characteristics of concrete is the crux for the 
design and maintenance of structures, e.g., dams [1], high-rise buildings [2,3], and prestressed structures [4,5], in which the influence 
of concrete’s time-dependent behavior cannot be ignored. Concrete is a complex and compound material, of which creep behavior is 
influenced by various factors, including concrete strength, type of cement, loading history, temperature variations, and even the 
composition of concrete constituents. 

Previous studies on concrete creep behavior primarily relied on laboratory tests conducted on standard specimens. In these ex
periments, researchers typically applied varying levels of load and monitored the strain process of the specimens to investigate 
concrete creep performance under different parameters and conditions. Even so, researchers typically resort to empirical formulas 
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obtained from regression analysis committing results of general applicability from these experimental data. This approach aims to 
identify the correlations inherent in experimental data and establish theoretical models describing the deformation trends of concrete 
over time. For instance, organizations such as the American Concrete Institute (ACI 209 R [6]) and Ceb-fip (MC2010 [7]) have sug
gested empirical formulas for concrete creep calculation formulation. Subsequently, Bazant et al. [8–12] have proposed several 
semi-empirical predictive models for the time-dependent deformation of concrete, based on the theory of micro-prestressing solidi
fication and a database recorded by RILEM with substantial experiments of concrete shrinkage and creep. However, these models 
involve complex computational forms and numerous parameters, some of which are challenging to obtain during the structural design 
phase. In 2000, Gardner and Lockman [13] introduced a more concise yet reasonably accurate model. The model can be used 
regardless of what chemical admixtures or mineral by-products are in the concrete, the casting temperature, or the curing regime. The 
primary focus of the aforementioned works is to develop a computational formula for determining the strain-time relationship in 
concrete under certain loading conditions. The formula is yet limited since it is only applicable when the stress in concrete is below 0.4 
fc, which is a threshold that concrete obeys a linear relationship between stress and strain. The previous work, more unfortunately, did 
not establish a coherent physical model for the deformation constitutive behavior of concrete. Moreover, the current concrete 
shrinkage and creep formulas are only applicable to a limited range of specific concrete types, such as ordinary and high-strength 
concrete. For other new types of concrete [14,15], these formulas are no longer applicable, and a whole new set of formulas needs 
to be derived to perform the corresponding calculations. 

By its definitions, viscoelastic materials simultaneously exhibit both viscous and elastic characteristics during the deformation 
process. The time-dependent deformation and flow characteristics of materials under loading are commonly simulated by viscoelastic 
material models, which consist of a series of elements (springs or dashpots) arranged in series or parallel, such as Maxwell, Kelvin- 
Voigt, and Zener, etc. Carol et al. [16] proposed a constitutive model applicable to concrete based on the viscoelastic material 
model. Santhikumar et al. [17] established a constitutive analytical model for a Kelvin-Voigt chain viscoelastic model, which is used to 
analyze the tensile softening phenomenon over time in aging materials like concrete. Han et al. [18] proposed a viscoelastic-plastic 
model consisting of six elements to simulate the creep behavior of concrete, revealing the nonlinear characteristics of concrete 
under high-stress conditions. Luzio [19] presented a finite-element formulation for the analysis of time-dependent failure of concrete 
using a Maxwell chain model. Honorio et al. [20] delved into the aging, relaxation, and creep mechanisms of concrete-type materials 
through modeling and analyzing the multiscale aging viscoelastic properties of different internal components. Aiming for an accurate 
depiction of material characteristics, viscoelastic models typically involve a series of basic elements arranged in a chain architecture, 
which demand numerous input parameters and have a complex analytical form, making them less favorable for calculations [21]. 
Additionally, the response of conventional viscoelastic models is controlled by ordinary differential equations, so they mathematically 
follow exponential laws. However, some scholars have found that the creep characteristics of materials follow power laws rather than 
exponential laws [22]. Therefore, a material model based on fractional calculus (FC) was proposed and has been widely applied to 
various engineering materials [23–28], i.e., replacing the integer order derivatives of stress or strain with fractional orders in the 
expressions of traditional viscoelastic models. This is called the FC viscoelastic model, which has demonstrated obvious advantages on 
reducing the number of required parameters when fitting experimental data. 

Currently, the FC model is primarily applied to fit experimental results reducing the number of parameters in the fitting process 
[29]. However, the mechanical properties of the FC model are limitedly studied. In analytical approaches, researchers utilize integral 
transformations to determine the response of the FC mechanical model [30,31], but obtaining analytical solutions is inaccessible when 
the model is complex. Furthermore, theoretical models are typically one-dimensional, restricting their practical applicability. Despite 
the FC model being proposed early [32], its numerical methods or FE implementations have primarily focused on one-dimensional 
models [33–35] while the three-dimensional case is rarely studied. The status quo is owing to the fact that considerations of 
three-dimensional constitutive behavior involving material Poisson’s ratio and multi-axial constitutive relations, and only a handful of 
studies have been conducted on several specific materials models, such as FMM (Fractional Maxwell Model) [36], FZM (Fractional 
Zener Model) [37,38], and FSLS(Fractional Standard-linear-solid Model) model [39,40]. For other typical fractional viscoelastic 
models, there is still a lack of detailed implementation methods in commercial FE software [38]. Moreover, the discretization of the 
constitutive relations over time scales is required in the FE implementation, which faces certain challenges due to the diverse forms of 
numerical solutions and the different definitions of fractional calculus. To incorporate FC models effectively in representing the 
behavior of materials, it is essential to implement these constitutive models into FE software using a general approach. Substantial 
efforts have been dedicated to the theoretical aspects of 1D fractional constitutive laws [35], along with addressing experimental 
considerations and parameter characterization [25,40–42]. Most existing studies employ expressions involving the Mittag-Leffler 
function to represent creep/relaxation compliance [39,40] and characterize the stress-strain constitutive relationship. However, 
this type of constitutive relationship requires repeated calculations of the Mittag-Leffler function in each time increment that 
computational efficiency is significantly reduced. Therefore, more efficient and accurate numerical computation methods are desired 
to facilitate the application of any FC model in FE analyses. 

This study develops a computational expression and three-dimensional constitutive relations applicable to various FC models. 
Based on the characteristics of concrete and employing numerical methods with Caputo-type fractional calculus, the present work 
proposed a novel FC-based viscoelastic model and a numerical computation method suitable for concrete materials. The proposed 
models are implemented using Fortran and the interface of commercial FE software (ABAQUS, UMAT), in which validation is also 
performed utilizing experimental results from several concrete creep tests. 
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2. General expression of viscoelastic models 

In establishing a specific viscoelastic constitutive relationship, most scholars typically derive the relaxation compliance G(t) or 
creep compliance J(t) of a particular model. They then establish the stress-strain relationship by integrating the obtained G(t) or J(t)
[39,43,44] according to the Boltzmann superposition principle, as shown in Eqs. (1) and (2), which are often labeled as ‘hereditary’ 
integrals because the value of G(t) (or J(t)) depends on all previous history of J(t) (or G(t)). 

σ(t) = ε(0)G(t) +
∫ t

0
G(t − τ)ε̇(τ)dτ Eq. (1)  

ε(t) = σ(0)J(t) +
∫ t

0
J(t − τ)σ̇(τ)dτ Eq. (2)  

where σ(t) and ε(t) are time history stress and the corresponding strain, respectively. Performing a Laplace transform on the above 
equations, the relationship between relaxation and creep function in Laplace domain can be obtained (Ĝ(s)Ĵ(s) = 1/ s2), which means 
that a single creep or relaxation test was able to determine all the relevant parameters in the viscoelastic model. 

However, G(t)/ J(t) for different models varies, and for more complex models, G(t)/ J(t) can only be represented in the Laplace 
space but not explicitly in the time domain that manifests considerable challenges on both computation and application. In fact, all 
constitutive equations can be expressed as linear relationships between stress, strain, and their corresponding derivatives, as shown in 
Eq. (3). 

f(σ, σ̇, σ̈,…, ε, ε̇, ε̈,…) = 0 Eq.(3) 

Therefore, the general form of traditional viscoelastic constitutive models can be denoted as Eq. (4) [32]. 

Pσ = Qε Eq. (4)  

where P and Q are linear differential operators with respect to time, as shown in Eq. (5). 

P =
∑a

r=0
pr

∂r

∂tr,Q =
∑b

r=0
qr

∂r

∂tr Eq. (5)  

where r ∈ N. For the FC constitutive model, it can still be signified as: 

Pf σ = Qf ε Eq. (6)  

In this case, Pf and Qf are linear fractional differential operators, expressed in the same form as Eq. (5), but with r ∈ R+. It is important 
to note that when the FC model is employed to characterize the creep behavior of concrete, the derivative order r lies between (0, 1). 
This is because concrete occupies an intermediate state between an ideal solid and an ideal liquid, and in most cases, it is closer to an 
ideal solid, thus usually being nearer to 0. The formulas for P, Q, Pf , and Qf in various commonly used models are detailed in Table 1. 

The aforementioned constitutive equations are one-dimensional, where the detailed derivation for the expressions of fractional 

Table 1 
Traditional and FC viscoelastic model.   

Model diagram Constitutive equation P & Q 

Maxwell σ(t) + η
k

dσ(t)
dt

= η dε(t)
dt 

P = 1+
η
k

∂
∂t 

Q = η ∂
∂t Model 

Kelvin-Voigt σ(t) = kε(t)+ η dε(t)
dt 

P = 1 
Q = k+ η ∂

∂t Model 

SLS Model (Zener model) σ(t) + η
k1

dσ(t)
dt

= k0ε(t) + η(k0 + k1)

k1

dε(t)
dt 

P = 1+
η
k1

∂
∂t Q = k0 +

η(k0 + k1)

k1

∂
∂t 

Single Fractional Model 
σ(t) = Cβ

dβε(t)
dtβ 

Pf = 1 
Qf = Cβ

∂β

∂tβ 

Fractional-KV Model 
σ(t) = Cα

dαε(t)
dtα + Cβ

dβε(t)
dtβ 

Pf = 1 
Qf = Cα

∂α

∂tα + Cβ
∂β

∂tβ 

Fractional-Zener Model 
σ(t) + Cα

Cβ

dα− βσ(t)
dtα− β = Cα

dαε(t)
dtα + Cγ

dγε(t)
dtγ +

CαCγ

Cβ

dα+γ− βε(t)
dtα+γ− β  Pf =

Cα
Cβ

∂α− β

∂tα− β  Qf = Cα
∂α

∂tα + Cγ
∂γ

∂tγ +
CαCγ

Cβ

∂α+γ− β

∂tα+γ− β  

Notes: α,β, γ ∈ (0,1), α − β > 0, and α+ γ − β > 0.  
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constitutive formulas can be referred to literature [44]. Presently, these equations will be expanded to encompass three-dimensional 
constitutive relationships. Assuming directions of spherical stress and deviatoric stress are mutually independent, the spherical stress 
and deviatoric stress directions can be denoted as Eq. (7) and Eq. (8) respectively. 

Pʹσkk = Qʹεkk Eq. (7)  

Pʹ́ Sij = Qʹ́ eij Eq. (8)  

where σkk and εkk represent the spherical stress and strain (volumetric stress/strain), Sij and eij denote the stress deviator and strain 
deviator, respectively. Pʹ and Qʹ can be regarded as the differential operators P and Q in the one-dimensional constitutive expression, in 
which Pʹ́  and Qʹ́  can be obtained through shear tests or derived from the constitutive equation by assuming a constant Poisson’s ratio. 

For isotropic materials, according to the Generalized Hooke’s law, stress and strain can be decomposed into spherical stress/strain 
and deviatoric stress/strain components, respectively, as follows: 

σij = Sij +
1
3

σkkδij, i, j = 1, 2,3 Eq. (9)  

εij = eij +
1
3

εkkδij Eq. (10)  

where δij represents the Kronecker symbol, which equals 1 when i = j and 0 when i ∕= j. Substituting Eqs. (7) and (8) into Eq. (9) yields: 

σij =
Qʹ́

Pʹ́ eij + δij
1
3

Qʹ

Pʹεkk Eq. (11) 

Substituting the modified Eq. (10) into Eq. (11) yields: 

Pʹ́ Pʹσij = PʹQʹ́ εij −
1
3

δij(PʹQʹ́ − Pʹ́ Qʹ)εkk Eq. (12) 

Eq. (12) represents the three-dimensional tensor expression of any linear viscoelastic constitutive equation, where tensor subscripts 
follow the Einstein summation convention. The same derivation process applies to the FC viscoelastic constitutive, and its expression 
formula is: 

Pʹ́
f P

ʹ
f σij = Pʹ

f Q
ʹ́
f εij −

1
3

δij

(
Pʹ

f Q
ʹ́
f − Pʹ́

f Q
ʹ
f

)
εkk Eq. (13)  

3. Discrete expression for viscoelastic materials 

The preceding section established a general expression for the constitutive behavior of both traditional and fractional-order 
viscoelastic materials, followed by the derivation of three-dimensional viscoelastic material models assuming a constant Poisson’s 
ratio. In this section, the implementation of these constitutive models will be demonstrated on the time scale through numerical 
solutions using finite differences and fractional calculus. The traditional Kelvin-Voigt viscoelastic model and an FC viscoelastic model 
will be used as examples in demonstrations. 

3.1. Traditional model (Kelvin-Voigt model) 

Taking the Kelvin-Voigt (KV) model as an example, which composed of a spring and a dashpot in parallel, as illustrated in Table 1, 
its constitutive equation is represented by Eq. (14). 

σ(t) = kε(t) + η dε(t)
dt

Eq. (14) 

In this model, P = 1 and Q = k+ η ∂
∂t. Assuming a constant Poisson’s ratio (ν), this model is extended to three dimensions, as 

expressed in Eq. (12), and following formulations are given: 

Pʹ = P = 1;Qʹ = Q = k + η ∂
∂t
;Pʹ́ = P = 1;Qʹ́ = Q = k + η ∂

∂t
Eq. (15)  

where k = k
2(1+ν) and η =

η
2(1+ν). 

For concrete materials, the constant Poisson’s ratio assumption is reasonable because variation in the Poisson’s ratio is only 
applicable in scenarios where distinct time scales exist for the volumetric and deviatoric components. For the convenience of FE 
implementation, the spherical stress and deviatoric stress are calculated separately based on Eq. (12): 

For i = j = 1: 

Pʹ́ Pʹσxx = PʹQʹ́ εxx −
1
3
(PʹQʹ́ − Pʹ́ Qʹ)εv, εv = εxx + εyy + εzz Eq. (16) 

Substituting Eq. (15) into Eq. (16) yields: 
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σxx = kεxx + ηε̇xx −
1
3
(k − k)εv −

1
3
(η − η)ε̇v Eq. (17) 

For i = j = 2 or 3, the same expressions can be obtained for other two principal stress directions. 
For i ∕= j: 

Pʹ́ Pʹσij = PʹQʹ́ εij Eq. (18) 

Similarly, substituting the differential operators yields: 

σxy = kεxy + ηε̇xy Eq. (19) 

Using a simple and stable backward difference method (FDM), one can obtain Eq. (20): 

ḟ t+Δt =
Δf
Δt

; ft+Δt = ft + Δf Eq. (20) 

Substituting Eq. (20) into Eq. (17) and Eq. (19) and rearranging results, Eq. (21) and Eq. (22) are derived: 

Δσxx =
(

k +
η

Δt

)
Δεxx −

(
Δt(k − k) + η − η

3Δt

)

Δεv +

(

kεxx −
k − k

3
εv − σxx

)

t
Eq. (21)  

Δσxy =
(

k +
η

Δt

)
Δεxy + (kεxx − σxx)t Eq. (22) 

Eq. (21) and (22) represent the discretized expressions of stress, strain, and their increments over the time scale for the KV model. 

3.2. FC viscoelastic model (single element) 

According to Table 1, FC viscoelastic models can also be represented in the form of differential operators (Pf ,Qf ). Taking a single FC 
model as an example, its constitutive equation is given by Eq. (23). 

σ(t) = CβDβε(t) Eq. (23) 

In this model, Pf = 1,Qf = Cβ
∂β

∂tβ. Likewise, assuming the constant Poisson’s ratio (ν) during the loading process, the extension of this 
constitutive model to three dimensions yields the parameters as shown in Eq. (24), where the order of fractional differentiation (β) 
remains the same [32]. 

Pʹ
f = 1; Pʹ́

f = 1; Qʹ
f = Cβ

dβ

dtβ; Qʹ́
f = Cβ

dβ

dtβ
Eq. (24)  

where Cβ =
Cβ

2(1+ν). 
Substituting Eq. (24) into Eq. (13) gives: 

σij = CβDβεij −
1
3

δij
(
Cβ − Cβ

)
Dβεkk Eq. (25) 

For i = j = 1: 

σxx = CβDβεxx −
1
3
(
Cβ − Cβ

)
Dβεv Eq. (26) 

For i ∕= j: 

σxy = CβDβεxy Eq. (27) 

Evident challenges arise in the application of FDM (Eq. (20)) to Eqs. (26) and (27). Thus, a numerical integration method employing 
fractional derivatives is necessary. Although various methods have been proposed [45–48], these methods have different applicability 
conditions, primarily due to the varied definitions of fractional calculus. 

In this study, the numerical approach proposed by Jin et al., in 2015 [49] for calculating Caputo-type fractional derivatives is 
employed. The advantage of this Caputo fractional derivative lies in its property that the derivative of a constant function is always 
zero, and its form is relatively concise, facilitating practical engineering applications. 

For a derivative order β within the range (0,1), Eq. (28) provides a discretized representation of the β-order derivative of the 
function f(t) based on the Caputo definition at uniformly spaced time intervals [49]: 

∂βf(tn+1)

∂tβ =
1

Γ(1 − β)

∑n

k=0

∫ tk+1

tk
(tk+1 − s)− β∂f(s)

∂s
ds Eq. (28)  

=
1

Γ(1 − β)

∑n

k=0

f(tk+1) − f(tk)
Δt

∫ tj+1

tj
(tn+1 − s)− βds+ rn+1

β,Δt 
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=
1

Γ(2 − β)
∑n

k=0
dβ,k

f(tn+1− k) − f(tn− k)

Δtβ + rn+1
β,Δt  

where dβ,k = (k + 1)1− β
− k1− β, and rn+1

β,Δt represents the truncation error. 
It can be observed from Eq. (28) that the most attractive aspect of using fractional operators in the viscoelastic constitutive laws is 

that the stress/strain response depends on the previous stress/strain history, which allows the long “fading” memory of the material to 
be taken into account. 

In Eq. (28), when j = 0 and dβ,j = 1, f
(
tn+1− j

)
− f
(
tn− j
)
= f(tn+1) − f(tn) = Δf(tn). Therefore, Eq. (28) can be written as Eq. (29). 

dβf(tn+1)

dtβ =
1

ΔtβΓ(2 − β)

(

Δf(tn) +
∑n

k=1

dβ,k(f(tn+1− k) − f(tn− k))

)

+ rn+1
β,Δt Eq. (29) 

Let σ(t) = δ(t) (unit step function), the strain response corresponding to Eq. (23) is the creep compliance of the material, and its 
analytical solution is given by: 

J(t) =
1

CβΓ(β + 1)
tβ Eq. (30) 

Here, Γ represents the gamma function, as shown in Eq. (31). 

Γ(α) =
∫ ∞

0
e− t tα− 1dt Eq. (31) 

Substituting Eqs. (28) and (29) after discarding the truncation error into the constitutive Eq. (23) yields the approximate numerical 
solution for the creep behavior of the material: 

Ĵ(tn+1) − Ĵ(tn) =
ΔtβΓ(2 − β)

Cβ
−
∑n

k=1
dβ,k(Ĵ(tn+1− k) − Ĵ(tn− k)) Eq. (32) 

By recursion, the creep response at any given time can be obtained using Eq. (32). It’s apparent that the accuracy of the numerical 
solution depends on the time interval Δt. Therefore, it is essential to compare the numerical solutions obtained with different time 
intervals to the theoretical solution given by Eq. (29). The comparison results are illustrated in Fig. 1. It is evident that the numerical 
results exhibit a favorable agreement with the theoretical solution. 

The relative errors between the theoretical and numerical solutions are calculated using Eq. (33), (the symbol N denotes the 
number of calculated time nodes). The error trends for different time steps and various fractional derivative orders are summarized in 
Table 2, where errors are found to decreases as the time step reduces. Notably, with Δt = 2, the numerical results closely approximate 
the theoretical solution. Moreover, with an increase in the derivative order (β), the error tends to increase though acceptable limits 
remain. 

Fig. 1. Comparison between numerical and analytical solution.  

Table 2 
Comparison between numerical results and analytical solution with different parameters.  

Err. β = 0.15 β = 0.20 β = 0.25 β = 0.30 β = 0.35 

Δt = 10 0.0382 0.0498 0.0608 0.0713 0.0813 
Δt = 4 0.0193 0.0253 0.0310 0.0366 0.0419 
Δt = 2 0.0112 0.0147 0.0181 0.0214 0.0245 
Δt = 1 0.0064 0.0084 0.0103 0.0122 0.0141 
Δt =

0.1 
0.0009 0.0012 0.0015 0.0017 0.0020  
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Err. =
1
N
∑N

i=1

|J(i) − Ĵ(i)|
J(i)

Eq. (33)  

4. Programming and validation of UMAT 

FE simulations implementing the material constitutive relations were conducted based on the subroutine utilizing the UMAT 
interface provided by the commercial FE software ABAQUS, in which the UMAT subroutine can define arbitrary mechanical consti
tutive relations of materials. It is invoked at each iteration during the solution process at the integration points of the element, ensuring 
that the stress and strain of the material satisfy user-defined relationships. Therefore, in the UMAT subroutine, it is necessary to update 
the corresponding stress state and stress increment. Additionally, the corresponding Jacobian matrix has to be provided because the 
entire solution process is discretized into a series of steps in ABAQUS solver. The stress state at each step is determined by adding the 
stress increment from the previous step multiplied by the Jacobian matrix (Eq. (34)). For linear-elastic-small-deformation materials, 
the Jacobian matrix is equivalent to the stiffness matrix. 

σt+Δt = σt + dσ = σt + Ddε Eq. (34) 

For a general small-deformation material, the Jacobian matrix D = ∂Δσ/∂Δε, where Δσ is the stress increment matrix and Δε is the 
strain increment matrix. In the case of isotropic materials, non-zero elements only appear in the upper-left 3 × 3 block and the main 
diagonal elements of the lower-right block. Therefore, when expanded, it can be represented as a 6 × 6 matrix: 

D =
∂Δσ
∂Δε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Δσ11

∂Δε11

∂Δσ11

∂Δε22

∂Δσ11

∂Δε33
0 0 0

∂Δσ22

∂Δε22

∂Δσ22

∂Δε33
0 0 0

∂Δσ33

∂Δε33
0 0 0

∂Δσ12

∂Δε12
0 0

Sym.
∂Δσ13

∂Δε13
0

∂Δσ23

∂Δε23

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. Eq. (35)  

4.1. Traditional model (Kelvin-Voigt model) 

In the previous section, the three-dimensional constitutive model for the KV model was derived, as presented in Eqs. (21) and (22). 
To update the stress and stress increment within the UMAT subroutine, these two equations are considered as functions of the strain 
increment. Subsequently, the partial derivatives with respect to the strain increment provide the coefficients in the Jacobian matrix, as 
shown in Eqs. (36)–(38). 

Fig. 2. Theoretical vs. FE analysis of KV model.  
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∂Δσxx

∂Δεxx
=
(

k +
η

Δt

)
−

(
Δt(k − k) + η − η

3Δt

)

Eq. (36)  

∂Δσxx

∂Δεyy
= −

(
Δt(k − k) + η − η

3Δt

)

Eq. (37)  

∂Δσxy

∂Δεxy
= k +

η
Δt Eq. (38) 

In Eqs. (36)–(38), k,η,k, and η are unknown variables that should be provided as input variables in the subroutine. For materials 
with a constant Poisson’s ratio, only k, η, and υ need to be specified, while remaining variables are accessible within the UMAT 
subroutine. 

To validate the subroutine, a standard cube with a side length of 100 mm is modeled. A constant unit axial pressure load is applied 
to the top surface, with a calculation time interval Δt = 1. The translational and rotational movements of the bottom surface are 
constrained. In Eq. (14), by setting σ(t) = δ(t) (unit step function), the creep theoretical solution of the KV model can be obtained: 

J(t) =
1
k

(

1 − exp
(

−
k
η t
))

Eq. (39) 

Extracting the displacement of the top nodes from the FE model and converting it into strain for comparison with the theoretical 
solution (Fig. 2), it is evident that the FE results closely match the theoretical solution, demonstrating the reliability of the subroutine. 

4.2. viscoelastic model 

As for FC viscoelastic model, Eq. (32) is substituted into Eqs. (26) and (27) following identical approach, combined with the 
application of FDM, so one can yield Eqs. (40) and (41). 

For i = j = 1: 

ψβΔσxx = Cβ
(
Δεxx + Θβ

εxx
)
−

(
Cβ − Cβ

)(
Δεv + Θβ

εv
)

3
− ψβσxx Eq. (40) 

For i ∕= j: 

ψβΔσxx = Cβ

(
Δεxy + Θβ

εxy

)
− ψβσxy Eq. (41) 

Similarly, performing partial differentiation on Equations (39) and (40) yields the coefficients in the Jacobian matrix: 

∂Δσxx

∂Δεxx
=

Cβ

ψβ
−

Cβ − Cβ

3ψβ
Eq. (42)  

∂Δσxx

∂Δεyy
= −

Cβ − Cβ

3ψβ
Eq. (43)  

Fig. 3. Theoretical vs. FE analysis of FC model.  
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∂Δσxy

∂Δεxy
=

Cβ

ψβ
Eq. (44) 

In Eqs. (40)–(44): 

ψβ = Δtβ ⋅ Γ(2 − β) Eq. (45)  

Θβ
εij =

∑n

k=1

dβ,k
(
εij(tn+1− k) − εij(tn− k)

)
Eq. (46) 

In the aforementioned equations, the unknown parameters are Cβ,Cβ and β, while the remaining variables can also be accessed 
throughout the calculation procedure. Notably, the FC model differs from conventional viscoelastic models that it requires the 
recording of strain history during the calculated process. In Abaqus subroutine, solution-dependent state variable (DEPVAR) can be 
employed as user-defined historical data at each Gauss integration point. However, this variable needs to be pre-defined before the 
calculation, and the upper limit for state variables is 1000, which might be insufficient for extended material creep analyses over 
prolonged durations. Consequently, this issue is addressed in this study by storing strain history in COMMON blocks (CB) developed by 
Refs. [37,38] Fortran. This storage space enables data transfer among program iterations by utilizing the stack memory of the com
puter system. Establishing a FE model and applying identical boundary conditions as shown in Fig. 2, the FE calculated results are 
compared with the analytical solution (Eq. (30)), as depicted in Fig. 3. It is shown that the FE strain closely aligns with the theoretical 
results for various orders (β). 

Based on the derived and analyzed processes above, the FE implementation and principles of viscoelastic materials can be sum
marized in Fig. 4. 

5. Time-dependent deformation model for concrete: case study 

In the previous section, FE simulations of material deformation over time were exemplified by the traditional KV model and the 
single element FC model. In this section, a FC model specifically applicable to concrete is proposed. The derivation of its numerically 
discrete solution method on the time scale is also presented, as well as its implementation in FE simulations. The reliability of the 
model is validated through several case studies. 

Fig. 4. The principles and flowchart of FE implementation.  

Fig. 5. Time-dependent constitutive model for concrete.  
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5.1. Development of 3D time-dependent constitutive relations for concrete 

The time-dependent deformation of concrete consists of elastic, creep, shrinkage, and temperature deformation. Elastic and creep 
deformation are stress-dependent, while the latter two are stress-independent deformations. This paper aims to establish a constitutive 
relationship capable of describing the deformation behavior of concrete specimens under loading. Therefore, the consideration is 
currently limited to elastic and creep deformations, while shrinkage and temperature-induced deformations are beyond consideration. 

As illustrated in Fig. 5, a FC viscoelastic model is proposed. This model comprises an elastic spring (①) and an FC element (②) 
connected in series, representing creep and elastic deformations of concrete, respectively. 

In this model, the two basic elements jointly sustain the applied load. Consequently, the strain of the entire model is the sum of the 
strains of the two elements, whose stress is identical. This loading characteristic aligns with the additive nature that elastic and creep 
deformations in concrete can be calculated separately and then superimposed (Boltzmann superposition principle). Based on this 
characteristic, the constitutive equation for this model can be expressed as Eq. (47). 

σ(t) + Cβ

k
dβσ(t)

dtβ = Cβ
dβε(t)

dtβ
Eq. (47) 

Extending to the three-dimensional constitutive relations, the following parameters can be derived: 

Pʹ
f = 1 + p1

dβ

dtβ; Pʹ́
f = 1 + p1

dβ

dtβ; Qʹ
f = q1

dβ

dtβ; Qʹ́
f = q1

dβ

dtβ
Eq. (48)  

where p1 =
Cβ
k ; p1 =

Cβ

k
; q1 = Cβ; and q1 = Cβ. In the case of a constant Poisson’s ratio (ν), the parameters are given by: Cβ =

Cβ
2(1+ν),k =

k
2(1+ν). Substituting above items into Eq. (13) yields the three-dimensional expression of the constitutive relationship: 

σij +(p1 + p1)Dβσij + p1p1D2βσij = q1Dβεij + p1q1D2βεij −
1
3

δij
[
εkk +(p1 + p1 − q1)Dβεkk +(p1p1 − p1q1)D2βεkk

]
Eq. (49) 

For i = j = 1: 

σxx +(p1 + p1)Dβσxx + p1p1D2βσxx = q1Dβεxx + p1q1D2βεxx −
1
3
[
εv +(p1 + p1 − q1)Dβεv +(p1p1 − p1q1)D2βεv

]
Eq. (50) 

For i ∕= j: 

σxy + (p1 + p1)Dβσxy + p1p1D2βσxy = q1Dβεxy + p1q1D2βεxy Eq. (51) 

Likewise, substituting Eq. (32) into Eqs. (50) and (51), and combining with FDM, the stress-strain relationship is expressed in terms 
of states and increments: 

For i = Eq. j = 1: 

ψβψ2βσxx +
[
ψβψ2β +ψ2β(p1 + p1)+ψβp1p1

]
Δσxx +ψ2β(p1 + p1)Θβ

σxx +ψβp1p1Θ2β
σxx = q1ψ2β

(
Δεxx +Θβ

εxx
)
+ p1q1ψβ

(
Δεxx +Θ2β

σxx
)

−
1
3
{

ψβψ2βεv +ψ2β(p1 + p1 − q1)
(
Δεv +Θβ

εv
)
+ψβ(p1p1 − p1q1)

(
Δεv +Θ2β

εv
)}

Eq. (52) 

For i ∕= j: 

ψβψ2βσxy +
[
ψβψ2β +ψ2β(p1 + p1)+ψβp1p1

]
Δσxy +ψ2β(p1 + p1)Θβ

σxy +ψβp1p1Θ2β
σxy = q1ψ2β

(
Δεxy +Θβ

εxy

)
+ p1q1ψβ

(
Δεxy +Θ2β

σxy

)

Eq. (53) 

Coefficients in the Jacobian matrix can be calculated as follows: 

∂Δσxx

∂Δεxx
=

q1ψ2β + p1q1ψβ

ψβψ2β + ψ2β(p1 + p1) + ψβp1p1
−

ψ2β(p1 + p1 − q1) + ψβ(p1p1 − p1q1)

3
[
ψβψ2β + ψ2β(p1 + p1) + ψβp1p1

] Eq. (54)  

∂Δσxx

∂Δεyy
= −

ψ2β(p1 + p1 − q1) + ψβ(p1p1 − p1q1)

3
[
ψβψ2β + ψ2β(p1 + p1) + ψβp1p1

] Eq. (55)  

∂Δσxy

∂Δεxy
=

q1ψ2β + p1q1ψβ

ψβψ2β + ψ2β(p1 + p1) + ψβp1p1
Eq. (56)  

In Eqs. (52)–(56), ψ and Θ can be calculated using Eqs. (44) and (45). Thus, it is only necessary to input the corresponding parameters 
for the material (p1,p1,q1,q1) into the UMAT program. 

5.2. Case study—Creep experiment on reinforced concrete 

Existing creep experiments mainly focus on plain concrete subjected to axial loads, in which the creep response is primarily 
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influenced by the internal composition of the concrete material. Therefore, FE results closely align with theoretical model solutions, as 
illustrated in Figs. 2 and 3. Consequently, when FE are employed to simulate creep, the emphasis lies in ensuring the accuracy of model 
parameters that can be optimized and regressively analyzed through experimental results. This study validates the FE model with two 

Fig. 6. Detailed information and loading arrangements of specimens: (a) Dimensions and reinforcement details of the specimen in Ref. [51]; (b) Loading setup for the 
specimen in Ref. [50]; (c) Dimensions and reinforcement details of the specimen in Ref. [50]; (d) Loading setup for the specimen in Ref. [50]. 

Table 3 
Details information of the specimens.  

ID of specimens ρs, % fc, MPa σ, MPa t0, Days 

C30-0.28–1.40 % 1.40 35.0 12.33 62 
C30-0.28–2.01 % 2.01 
C50-0.28–1.40 % 1.40 40.4 13.82 
C50-0.28–2.01 % 2.01 
C60-0.30–1.40 % 1.40 58.2 20.10 
C60-0.30–2.01 % 2.01 
W-NS-LR 0.39 51.7 4 8 
W-NS-HR 2.43 

Notes: ρs, fc, σ, and t0 represent sectional reinforcement ratio, concrete strength, axial stress, and loading age, respectively. And the strain values from the references have 
been converted to strain responses under unit stress ((t)).  
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Fig. 7. FE model information and loading boundary conditions.  

Fig. 8. Configuration of analysis steps.  

Fig. 9. FE results (C30-0.28–1.40 % [51]): (a) The relationship between axial displacement and time; (b) Concrete stress; (c) Reinforcement stress.  
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sets of creep experiments on reinforced concrete [50,51]. One set comprises standard creep tests on 150 mm × 150 mm × 450 mm 
prismatic specimens conducted by a standard creep test apparatus. The other set involves creep tests on 1500 mm × 120 mm × 1800 
mm shear walls, loaded using a reaction frame and hydraulic jacks. Each experimental set includes specimens with different longi
tudinal reinforcement ratios for comparative analysis. The reinforcement configurations and loading conditions are illustrated in 
Fig. 6, and specific details of each specimen are provided in Table 3. 

The FE models of the specimens and their loading boundary conditions are depicted in Fig. 7. C3D8 elements are employed for 
concrete, and T3D2 truss elements are used for the reinforcement, respectively. The individual mesh size for hexahedral elements is 
selected as having a length of 20 mm. The constitutive relationship for concrete material is defined through UMAT, while a bi-linear 
model is adopted for the reinforcement material. The coupling between steel and concrete is achieved through embedment (as the 
creep experiments were conducted under stress levels significantly lower than the concrete strength, the bond slip between steel and 
concrete could be neglected). Due to the limitation in defining instantaneous loads during the static general analysis step in ABAQUS, a 
two-step analysis strategy is employed. In the initial step, time is set to 1, and a linear load ramp from 0 to 1 is established. Subse
quently, in the second step, the load is held constant for a duration equal to the number of days corresponding to the experimental 
duration, as illustrated in Fig. 8. 

The FE results for the first specimen in the first and second experimental set are presented in Figs. 9 and 10, respectively. It is 
apparent that the axial displacement of the specimens (Fig. 9(a)–. 10(a)) progressively increases with time, while the rate of change 
decreases as time elapses. The stress in concrete (Fig. 9(b)–. 10(b)) initially reaches its maximum upon loading and gradually decreases 
over time, while the stress in reinforcement exhibits an increasing trend (Figs. 9(c) and Fig. 10(c)). This observation indicates that, 

Fig. 10. FE results (W-NS-LR [49]): (a) The relationship between axial displacement and time; (b) Concrete stress; (c) Reinforcement stress.  

X. Luo et al.                                                                                                                                                                                                             



Journal of Building Engineering 95 (2024) 110171

14

under constant loading, the creep of concrete leads to a gradual transfer of stress from concrete to steel, aligning with the conclusions 
drawn in literature [3]. 

In experiments, vertical displacement was recorded at the upper and lower endpoints of the experimental strain measurement area. 
The experimental strain values were calculated by dividing the difference in displacement between these two points. The FE strain 
values were compared with the experimental strain results, as illustrated in Fig. 11. It can be observed that the FE results closely 
approximate the experimental results, demonstrating consistency in the deformation patterns of concrete strain over time. 

6. Conclusions 

This study proposes an effective and widely applicable numerical method for traditional and fractional-order calculus viscoelastic 
models to simulate the time-dependent behavior of materials under loading. Exploiting the deformation characteristics of concrete, a 
theoretical model suitable for simulating the time-dependent deformation of concrete is also developed. Based on the expression of 
constitutive relations under the general definition of viscoelastic materials, this method enables the derivation and solution of nu
merical methods for viscoelastic models with arbitrary complexity. In summary, the following conclusions can be drawn.  

(1) When simulating material deformation, highly complex constitutive forms are often required in conventional viscoelastic 
models, in which specific solution and parameter fitting processes are intricate, and the physical significance is unclear. 
Therefore, this study proposes a viscoelastic model based on fractional-order calculus to simulate the time-dependent behavior 
of materials. This model reduces the number of required parameters with enhanced fitting capabilities, while clear physical 
significances are maintained.  

(2) The constitutive relations of both traditional and fractional-order calculus models are discretized in a unified expression on the 
time scale. For numerical solution methods, the fractional-order calculus models are solved using the numerical approach based 
on the Caputo-type defined integration. The influence of time interval on the solution accuracy is duly analyzed.  

(3) By decomposing the stress and strain in the constitutive model into spherical and deviatoric components, the three-dimensional 
tensor constitutive expression for the model is obtained that allows its application in the three-dimensional domain. Then the 
model is implemented in commercial FE software, demonstrating its application value in engineering fields. 

(4) Based on the deformation characteristics of concrete under loading, a concrete constitutive model using fractional-order de
rivatives is proposed. This model utilizes two basic elements to represent the elastic and creep deformations of concrete, 

Fig. 11. Comparison of FE results and experimental strain.  
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characterized by strong interpretability, clear physical significance, and fewer parameter inputs. Additionally, it demonstrates 
favorable fitting capabilities indicated by high consistency between FE and experimental results. 

This method can be readily extended to any type of concrete, and even other materials, requiring only the recalibration of the 
parameters within the constitutive model. In future research, factors such as concrete aging time, environmental humidity, and 
environmental temperature can be incorporated into this model to achieve a comprehensive understanding of the stress-strain 
response of specimens under continuous multi-stage loading conditions in complex environments. 
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