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A B S T R A C T

Freight transport is crucial in fostering economic growth and enhancing societal well-being, but it also poses
challenges for traffic management and environmental sustainability. For freight planning and policy formulation,
it is important to measure and evaluate regional freight accessibility. This paper proposes a novel framework for
analyzing regional freight accessibility based on truck trajectory data. The framework is structured around two
principal components: extracting freight trip information and constructing a freight accessibility model. It in-
troduces precise and effective methodologies for identifying truck parking zones based on trajectory data,
thereby facilitating the extraction of complete freight trip information. Afterward, the framework integrates a
distance-weighted topological analysis with multiple relevant indicators to comprehensively assess the freight
accessibility of a region. Additionally, it incorporates spatial lag modeling to examine the factors influencing the
spatial distribution of freight accessibility within a region. Applied to a case study in Hunan Province, China, the
framework demonstrates its efficacy. The analysis reveals that accessibility in Changsha and two other cities
stands out significantly higher than in other cities. The study offers valuable insights for strategic freight plan-
ning and policy formulation.

1. Introduction

In the past decades, the rapid advancement of economic globaliza-
tion and e-commerce has accelerated freight demand growth, leading to
increased truck volume on road networks. This rise in freight transport
may intensify traffic congestion and elevate the potential for vehicular
accidents, emphasizing the urgency for transportation authorities to
oversee truck traffic effectively. In China, the National Road Freight
Vehicle Public Regulation and Service Platform collects trajectory data
from heavy-duty trucks exceeding 6 m in length or 12 tons in weight.
This regulatory mechanism is designed to refine the dynamic oversight
of truck operations and advance road traffic safety management.

Vehicle trajectory data, recording the spatiotemporal information of
vehicles, have become a valuable source of information for trans-
portation research. It can reflect the travel behavior (Akter & Hernan-
dez, 2022; Diana, Pirra, & Woodcock, 2020; Yuan, 2022), demand
(Demissie & Kattan, 2022; Kinjarapu, Demissie, Kattan, & Duckworth,
2022), and preferences of travelers (Ge& Fukuda, 2016; Xu& González,
2017; Zanjani et al., 2015), as well as the characteristics and perfor-
mance of transportation systems (Akter & Hernandez, 2023; Akter,

Hernandez,& Camargo, 2023; Mjøsund& Hovi, 2022; Nam, Hyun, Kim,
Ahn, & Jayakrishnan, 2016). With the rapid development of positioning
technologies and intelligent transportation systems, vehicle trajectory
data have become more abundant and accessible, enabling more in-
depth and comprehensive analysis of various transportation issues.
Among different types of vehicle trajectory data, truck trajectory data
are particularly important for studying freight transport, which is
essential for economic development.

Freight transport is a complex and dynamic process that involves
multiple actors, modes, and stages. Various factors related to infra-
structure, land use, market, policy, and environment may influence
freight transport. Understanding freight transport’s spatial and temporal
patterns and the factors affecting them is crucial for improving freight
efficiency, reducing freight costs, and mitigating negative externalities.
However, traditional data sources for freight transport, such as surveys,
censuses, and statistics, are often limited in scope, frequency, and ac-
curacy. They are challenging to capture the detailed and dynamic as-
pects of freight transport, such as the origin, destination, route,
duration, and purpose of truck trips. Therefore, truck trajectory data,
which can provide rich and timely information on freight movements,
has great potential for advancing freight transport research.
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Additionally, analyzing truck trajectory data opens avenues for
acquiring a deeper understanding of freight movement patterns and the
intricacies of logistic network configurations.

This study aims to propose a framework for assessing regional freight
accessibility, using Hunan, China as a case study. Freight accessibility,
defined as the ease of reaching destinations for freight activities, is an
essential indicator of the performance and quality of freight transport
systems. This indicator reflects the spatial distribution of freight demand
and supply, as well as the connectivity and efficiency of freight networks
(Acheampong& Asabere, 2022; Calatayud, Palacin, Mangan, Jackson,&
Ruiz-Rua, 2016; Kocatepe, Ozkul, Ozguven, Sobanjo, &Moses, 2020). It
also affects the location choices and competitiveness of businesses and
industries (Jiang, Timmermans, & Yu, 2018), as along with regional
economic development and social equity (Cascetta, Cartenì, Henke, &
Pagliara, 2020). Therefore, measuring and evaluating freight accessi-
bility is essential for understanding the current situation of a freight
transport system and guiding freight planning and policy making.

The main contributions of this study are as follows:

a. A methodology is proposed for identifying valid stopping points and
parking zones from truck trajectory data, which are the key elements
for extracting truck trips and activities.

b. A regional freight accessibility model is developed based on complex
network theory, which can capture the structure and dynamics of
freight networks and measure freight accessibility at the city level.

c. A spatial regression analysis is conducted to explore the spatial dis-
tribution patterns and influencing factors of freight accessibility,
using a spatial lag model that accounts for the spatial dependence
and heterogeneity of the data.

The rest of this paper is organized as follows: Section 2 reviews the
related literature on vehicle trajectory data analysis and accessibility
assessment. Section 3 describes the methods used in this study. Section 4
applies the model to the case study of Hunan Province and discusses the
results. Section 5 concludes the paper and suggests directions for future
research.

2. Literature review

This survey primarily focuses on two key aspects related to trajectory

data: the analysis of trajectory data and the assessment of accessibility.

2.1. Trajectory data analysis

Research utilizing collected truck trajectory data has a well-
established foundation, as it facilitates the analysis of freight transport
demand and the efficiency of transport networks. Researchers identify
vehicle stopping points, extract vehicle travel itineraries, and analyze
travel characteristics using trajectory data(Hughes, Moreno, Yushimito,
&Huerta-Cánepa, 2019; X. Yang, Sun, Ban,&Holguín-Veras, 2014). The
development of an algorithm to identify stop points based on these data
is particularly crucial.

Previous research on stop points identification algorithms can be
categorized into two types. The first type utilizes multisource data for
identification, while the second type designs algorithms based on tra-
jectory data alone. Additionally, some research combines both ap-
proaches for stop points identification. In methodologies that integrate
multiple data sources, the primary data consist of geographical
information-related data and the secondary data pertain to driving
assistance. Comendador, López-Lambas, and Monzón (2012) developed
an analytical framework to identify stop points and extract pertinent
travel information by utilizing multiple data sources, such as vehicle
observation surveys, GPS data, and vehicle trip diaries. Yang et al.
(2022) presented a data-driven framework for identifying stopping
points and potential parking zones based on distinct data features. This
framework synergizes highway network GIS data with freight-related
POI (Points of Interest) data to determine valid stopping points.

Various algorithms employ spatial clustering and threshold tech-
niques to identify parking points from trajectory data. Ma, Wang,
McCormack, and Wang (2016) developed a non-hierarchical spatial
clustering algorithm, DBSCAN, which leverages spatiotemporal features
of trajectory data and incorporates road network information. Other
studies have adopted different spatial clustering methods, such as the K-
means algorithm (Kuppam et al., 2014), optic algorithms (Ankerst,
Breunig, Kriegel, & Sander, 1999), and model-based clustering tech-
niques(Poliziani, Rupi, Mbuga, Schweizer, & Tortora, 2021). In
threshold methods, various algorithms have developed based on tra-
jectory data features, including speed (Camargo, Hong, & Livshits,
2017), time (Yanhong & Xiaofa, 2013), and distinct thresholds. More-
over, some studies have suggested hybrid techniques integrating

Nomenclature

Ai Accessibility of region i
Aij Accessibility
Cij Distance between freight node and city
C(Vi) Betweenness centrality
D1 Distances from freight nodes to the administrative center
D2 Distances between all cities
Di Degree centrality value of node i
D+

i Positive ideal solutions
D−

i Negative ideal solutions
Ej Entropy value of indicator
Mi Quality indicator of region i
Mj Quality indicator of region
N Number of nodes
Pj Quality indicator of freight node
Pjk Number of shortest paths
Pjk(i) Number of paths pass through node i
Qj Quality indicator of regions outside region i
R2 Goodness of fit
Si Comprehensive score

St Distance
V+

j Distance from the target to the optimal target
V−

j Distance from the target to the worst target
W Spatial weight matrix
X Independent variable matrix
Y Dependent variable
dij Travel impedance
f Travel impedance
i Region code
j Region code
ki Degree of node i
m Number of indicators
mj Economic quality indicator
pij Proportion of indicator
wj Weight of indicator
xij initial value of indicator
x*ij Standardized value of indicator
β Coefficient of impedance function
ε Error term
ρ Spatial lag coefficient
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multiple feature thresholds, including speed and time (Liu, Chen, Wei,&
Li, 2021; Wei, Chen, Sun, & Li, 2021) or distance and time (Demissie &
Kattan, 2022; Laranjeiro et al., 2019; Li et al., 2021; F. Liu et al., 2020;
Ye, Zheng, Chen, Feng, & Xie, 2009). Additionally, Chankaew et al.
(2018) merged two methodologies to determine potential stop points by
using time thresholds and geographic information. However, current
approaches to trajectory data processing, often relying on empirical
thresholds or spatial clustering, may lead to inaccuracies in identifying
stop points. Therefore, more accurate methods and research frameworks
are necessary to precisely detect stop points.

2.2. Transport accessibility assessment and modeling

Existing studies on transportation accessibility can be categorized
into two main aspects: assessing accessibility and analyzing its influ-
encing factors and evaluating the functionality of transportation net-
works using accessibility as an essential indicator.

Assessing transportation accessibility and its influencing factors are
fundamental in optimizing transportation networks, improving trans-
port efficiency, and achieving sustainable development goals. To this
end, various methods have been developed to measure transportation
accessibility, including gravity models (Fairthorne, 1964), Huff models
(Huff, 1963), and their adaptations. Hansen (1959) initially proposed
the definition and calculation method for accessibility, representing the
opportunity for interaction between different nodes in a transportation
network. Chang, Chen, Li, and Li (2019) elucidated the distinction be-
tween absolute and relative accessibility, including their respective
calculation methods. By leveraging real-time data from the Google Maps
API, they estimated the accessibility of urban parks and employed
regression models to assess the influencing factors. Song et al. (2020)
introduced the concept of regional potential traffic attraction based on
the Huff model. They analyzed the significant relationship between
traffic attraction and urban traffic emissions, particularly addressing the
imbalance between urban development and traffic accessibility in the
city center. Cao et al. (2019) conducted a raster-based accessibility study
for the Guangdong-Hong Kong-Macao Greater Bay Area using ArcGIS.
They performed accessibility calculations and spatial pattern analyses,
exploring spatial connectivity through passenger data from roads, rail-
roads, ports, and airlines. Tome, Santos, and Carvalheira (2019) utilized
open-source data alongside the Network Analyst extension of ArcGIS to
evaluate the accessibility of both private and public transportation to
medium-sized facilities in urban communities. Chen, Ni, Xi, Li, and
Wang (2017) proposed a model employing multilevel grid segmentation
and multimodal public transportation networks to evaluate the distri-
butional differences in city spatial accessibility. They applied this model
to assess the accessibility of public transportation in Nanjing.

Regarding transportation network analysis using accessibility as an
indicator, the study primarily integrates complex network theory to
analyze the spatial pattern distribution of the network. Deng, Song,
Xiao, and Huang (2022) developed a comprehensive model to assess the
actual connectivity of ports and logistics in China’s Yangtze River Eco-
nomic Belt. The model utilized an improved gravity model and relevant
indicators from complex network theory for intra-port to inland hin-
terland logistics connectivity analysis. Lu and Lin (2019) emphasized
that accessibility assessment is crucial for vulnerability analysis of
transportation networks. They proposed an accessibility assessment
methodology for multimodal public transport. Dong, Wang, Mostafavi,
and Gao (2019) integrated post-disaster network access to critical fa-
cilities into network robustness assessment and provided location
choices for hospitals and other venues. Previous research has focused on
constructing evaluation models and scrutinizing factors influencing
accessibility, with a notable concentration on urban infrastructure or
critical hubs. However, there has been a gap in studying large-scale road
freight transport networks.

3. Methodology

3.1. Research framework

Figure 1 presents an overview of the study, comprising several
important steps: (1) Data pre-processing; (2) Stop points detection; (3)
Accessibility modeling; and (4) Spatial analysis.

3.2. Data

As depicted in Fig. 1, the data utilized in this study include truck
trajectory data, freight node-related data, distance data, and govern-
ment statistical data. Detailed introduction and processing of truck
trajectory data will be provided in the next section. The freight node-
related data used in this study comprise geographical information data
for national-level and provincial-level freight parks. The dataset en-
compasses 18 different information fields, such as plot names, devel-
opment zone names, geographic location, tax revenue, dates of
establishment, and others. Of particular note, the tax revenue field
serves as the primary indicator of the economic quality of these nodes in
this study, as shown in Table 1. Distance data is sourced from the
AutoNavi Map API(Amap, 2002), while government statistical data is
obtained from government statistical yearbooks websites(HPPGP,
2023).

3.3. Trajectory data processing

3.3.1. Data resources and preprocessing
This study utilized data from the National Road Freight Vehicle

Public Regulation and Service Platform(PRC, 2016), encompassing the
trajectory information of all heavy trucks in Hunan Province on
November 1, 2021. These heavy trucks are defined as those exceeding a
length of 6 m or a weight of 12 tons. The dataset comprises approxi-
mately 290 million records. Each record consists of 16 distinct fields,
classified into two primary categories: GPS specifics and platform-
related details. The GPS segment includes essential parameters such as
vehicle identification numbers, altitude, longitude, latitude, speed,
distance traveled, timestamp, direction, and vehicle status. Table 2 il-
lustrates the data sample, where the vehicle ID is fake data. Moreover,
the platform-related segment contains platform access codes. The data
were predominantly sampled at 30-s intervals, with a fraction recorded
at shorter intervals.

Before starting the trajectory data analysis, it is imperative to thor-
oughly examine the raw data and eliminate anomalous data records to
ensure data consistency and analytical effectiveness. This examination
primarily discarded:

(1) Duplicate data.
(2) Outliers, such as those indicating excessively high vehicle speeds.
(3) Data with severe positional discrepancies or abrupt deviations.
(4) Sparse records were instances where a single vehicle’s continuous

record was fewer than 20 or when the trip duration, even after
missing data imputation, was <10 min.

Vehicles meeting these criteria were considered invalid for freight
transport analysis and were excluded from further analysis. After elim-
inating data falling into the above four categories (approximately 16%
of the original dataset), 210 million records remain in the dataset. The
geographical location map of the study area for the case analysis is
shown in Fig. 2. The spatial distribution of preprocessed trajectory data
is demonstrated in Fig. 3, which provides valuable insights into the
extent of spatial coverage and concentration of GPS data associated with
heavy-duty trucks.

3.3.2. Identification of truck stops and parking zones
It is crucial to extract truck trips from GPS trajectory data to study

J. Li et al.
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freight transport based on truck trajectories. This study proposes a
method to address the challenge, which primarily involves two steps: (1)
accurately identifying stop points, and (2) demarcating parking zones.

3.3.2.1. Identification of valid stop points. Throughout a freight trip, the
truck may make various temporary stops, such as waiting at traffic

signals or being stuck in traffic jams. To determine valid stop points,
such transient stops must be filtered. This study adopts a threshold-
driven approach to determine valid stops in truck trajectories and to
distinguish them from temporary stops by defining specific time and
distance thresholds. The determination of these thresholds was based on
previous studies (Camargo et al., 2017; Ma et al., 2016; Y. Yang et al.,
2022) and the features of the trajectory dataset. The definitive criteria
for identifying valid stopover points are that within consecutive GPS
trajectory datasets, GPS coordination should remain within a 500-m
buffer area for over 20 min.

3.3.2.2. Identification of freight parking zones. Considering the vast size
of the trajectory dataset, multiple stop points are anticipated to be
clustered around single locations. This phenomenon indicates that
multiple truck trips end at or near this location, resulting in a distribu-
tion of different stop points within the area. This study uses Density-
Based Spatial Clustering of Applications with Noise (DBSCAN) clus-
tering algorithm to merge multiple nearby stop points into a single
parking zone. This type of density-based clustering algorithm assumes
that categories can be determined by the density of sample distribution.
By grouping closely connected samples into a single category, a cluster is
formed. Therefore, this study employs such an algorithm to define
clusters of valid parking spots located in the same area, which are
identified as parking zones. Fig. 4 provides a schematic representation of
the research methods applied in these two steps.

3.3.3. Extraction of freight trip origin-destination (OD) pairs
Estimating trip distributions and evaluating origin-destination (OD)

matrices form the foundation of freight demand modeling and regional
transportation planning. Previous analyses of trajectory data have often
employed administrative divisions as a reference point. While these
divisions have the advantage of providing demographic and socio-
economic data, this approach may ignore the detailed trips within
each unit, which are critical for understanding freight connectivity.
According to Fig. 3, the freight transport hotspots in Hunan Province are

Fig. 1. Overall structure of the study.

Table 1
Example of geographic information data for development zones.

Plot
Name

Development Zone Name Level Tax Revenue (in 10
thousand yuan)

Area
One

Changsha Economic Development
Zone

National 47,382

Area
Two

Changsha Huanghua
Comprehensive Bonded Zone

National 24,732

Area
Three

Changsha Lin Kong Industrial
Agglomeration Area Provincial 13,482

Area
Four

Yueyang Economic and
Technological Development Zone National 238,193

Area
Five

Zhangjiajie Economic
Development Zone

Provincial 3479

Table 2
Exemplary GPS data field information.

Index ID Latitude Longitude Speed Timestamp Angle

1 Aa 111.153409 25.318748 0
2021/11/1
12:03:01 308

2 Aa 111.153834 25.318453 30 2021/11/1
12:03:31

190

3 Aa 111.154284 25.318267 25 2021/11/1
12:04:01

0

4 Aa 111.154738 25.318236 44
2021/11/1
12:04:31 313

5 Aa 111.154973 25.317983 64
2021/11/1
12:05:01 76

J. Li et al.
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densely distributed, with several hotspots located within cities. It is
necessary to consider detailed trip information within these areas.

By dividing the study area into grids through raster segmentation,

continuous geographical space can be discretized into discrete grid
units, facilitating spatial analysis and processing of vehicle trajectory
data. The size and shape of grid units are not fixed; shapes can include

Fig. 2. Geographical Location Maps of the Study Area: (a) the People’s Republic of China, (b) the Distribution of Major Roads in Hunan Province, (c) the
Administrative Divisions of Hunan Province, and (d) the Locations of Hunan Province within the Administrative Map of China.

Fig. 3. Heatmap of the trajectory data distribution.

J. Li et al.
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grids, hexagons, rectangles, etc. In this study, grid-shaped raster units
are utilized, as depicted in Fig. 5. When selecting grid size, smaller sizes
are generally preferred. Choosing an excessively large partition size
would similarly fail to effectively capture detailed travel information
within the study area. Considering factors such as the size of freight
destinations like logistics parks and the lack of necessity to analyze
excessively short truck trips, a grid size of 2 km was chosen based on
analysis of the dataset.

To perform grid cell partitioning for a specific study area, the latitude
and longitude of each grid vertex can be calculated based on the pre-
determined grid cell size. Subsequently, all grid cells are assigned unique
identifiers for indexing and identification purposes. In this study, after
identifying parking spots and extracting complete truck trips, the study
area was partitioned into 2 km * 2 km grids. Next, the start and end
points of truck trips were matched to grids based on latitude and
longitude, determining the corresponding grid for each trajectory point
and thus obtaining the origin-destination (OD) matrix between grids, as
illustrated in Fig. 6.

3.4. Freight accessibility modeling

3.4.1. Method of model design
Analyzing regional accessibility is crucial in transportation network

planning. The gravity model, a well-established method for evaluating
spatial accessibility, accounts for all areas within the study and con-
siders travel time or distance between regions as travel impedance. This
model was initially introduced by Hansen (Hansen, 1959) and is
expressed as follows:

Ai =
∑

j
Qjd− β

ij (1)

Where: Ai represents the accessibility of regioni;Qjrepresents the
quality indicator of regions outside region i;dij represents the travel
impedance between region i and regionj, typically travel time or dis-
tance; and β is the coefficient of the impedance function.

The gravity model primarily concentrates on accessibility within a
given study region but neglects the competitive dynamics among
different regions. Additionally, the model does not account for the
probability of regional travel choices. To mitigate these limitations, an
enhancement of the gravity model is necessary for a more comprehen-
sive analysis of regional accessibility (Deng et al., 2022):

Ai =
∑

j
MiMjf

(
dij, β

)
(2)

Where: Airepresents the accessibility of region i;Mi and Mjrepresent
the quality indicators of the study regions i and j, In the literature, these
are economic quality indicators of regions; f

(
dij, β

)
represents the travel

impedance between region i and regionj;β is the coefficient of the
impedance function.

Interregional connectivity is influenced by factors, including the ef-
ficiency of the road freight network and the overall strength of the
economy. The study takes a comprehensive approach by incorporating
the actual road network, important parameters of network nodes, and
freight attractiveness indicators of cities and districts. These elements
are integrated to calculate regional accessibility, as per the improved Eq.
(2). Including major freight-related parks (freight nodes) in the calcu-
lation reflects the efficiency of inter-regional freight transport. The
specific calculation steps are as follows:

1. The distance matrix D1 representing the distances from all freight
nodes within each city to the administrative center of that city were
measured using AutoNavi Map API (Amap, 2002). These distances
were then aggregated to determine the total distances St within each
city t. Additionally, the distance matrix D2, representing the dis-
tances between all cities in Hunan Province, were measured in the
same way as D1.

2. The quality indicator for each freight node was calculated using the
provided formula:

Fig. 4. Method for extracting freight parking zones.

Fig. 5. Grid division schematic.

J. Li et al.
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Pj = mj
/(

mj + St
)

(3)

where mj is the economic quality indicator of the node, Pjrepresents
the quality indicator of freight nodej,and normalization is applied to mj

and St to eliminate dimensional effects.

3. The attractiveness of each node to other cities was estimated using
the following formula

Ai =
∑

j
MiPjf

(
Cij, β

)
(4)

where Aij represents the accessibility of cityi, Mi represents the
quality indicator of city i, Cij is the distance from freight node j to city i
calculated based on distance matricesD1andD2, and βis the parameter of
the impedance function.

4. The procedures were applied to all cities in Hunan Province to
ascertain overall freight accessibility.

3.4.2. Quality indicators of cities
The city’s quality indicator is assessed in connection with Eq. (4).

The magnitude of this indicator should directly reflect the city’s
attractiveness to other cities and represent its importance within the
overall freight transport network. Therefore, this study adopts topo-
logical indicators rooted in complex network theory as the quality
indicator.

3.4.2.1. Weighted network construction. As described in Section 3.3.3, at
the grid level, origin-destination (OD) truck trips between grid cells
within the study area were extracted from the trajectory data. These
grids were subsequently aligned with the administrative boundaries of
cities, resulting in the calculation of inter-city freight OD trips at a macro
level, as visualized in Fig. 7. Further, building on the intercity OD data
and utilizing complex network theory, we constructed a flow-weighted
network using the Space P method. This method provides an intuitive
representation of node connectivity within the network, with its struc-
tural representation depicted in Fig. 8.

3.4.2.2. Complex network topological metrics
3.4.2.2.1. Betweenness centrality. Betweenness centrality measures

the degree to which a node serves as an intermediary in the shortest

paths connecting all pairs of nodes within a network. This metric is
primarily a global network attribute, elucidating the importance of a
node in facilitating network propagation. The formula for calculating
betweenness centrality is as follows:

C(Vi) =
∑

Pjk(i)
/

Pjk (5)

Where: C(Vi)represents the betweenness centrality value of node i;Pjk

is the total number of shortest paths between nodes j and k; Pjk(i) is the
number of those paths that pass through node i.

3.4.2.2.2. Degree centrality. Degree centrality originates from the
inherent properties of network nodes and primarily reflects local
network characteristics. Nodes with a higher degree of centrality are
connected to more neighbors, signifying their greater importance within
the network. A node’s degree centrality is determined by counting the
number of edges connected to it. The formula for calculating degree

Fig. 6. Freight Trip OD Extraction: (a) Illustration of Grid Division in the Study Area, (b) Freight OD Connectivity Map between Grids.

Fig. 7. Freight flow map between cities in Hunan Province.

J. Li et al.
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centrality is as follows:

Di = ki/(N − 1) (6)

Where:Di represents the degree centrality value of node i;ki is the
degree of node i;N is the total number of nodes in the network.

3.4.2.2.3. PageRank ranking. PageRank is a graph theory-based
mathematical algorithm initially developed to evaluate the importance
of web pages(Brin & Page, 1998). It treats all web pages on the World
Wide Web as nodes and hyperlinks as edges. The weight value of each
node indicates the importance of the corresponding page. For example, a
page linked by many other pages will have a high weight value (high
PageRank). PageRank has now been extended to assess the importance
of nodes within a network. In a topological graph, the PageRank value
represents the probability of a node being traversed, which depends on
the number and importance of other nodes linking to it. Nodes with
higher PageRank values are considered more important within the
network because they contribute more significantly to the network and
have greater influence.

3.4.2.3. TOPSIS model based on entropy weighting. This study employs
the TOPSIS model and an entropy-based method, to evaluate the quality
indicators of cities and counties in Hunan Province. The essential steps
involved are as follows:

1. Decision Matrix: Calculate indicator values for each city in the
traffic-weighted network and form a decision matrix, with cities listed in
the rows and indicators in the columns.

2. Normalization: Standardize the decision matrix using min-max
normalization as per Eq. (7) to eliminate scaling disparities.

x*ij =
xij − min1≤i≤nxij

max1≤i≤nxij − min1≤i≤nxij
(7)

Where:x*ij represents the standardized value of the city i in the indi-
cator j;xijrepresents the initial value of the city i in the indicator j;n is the
total number of cities.

3. Weight Calculation: Employ the entropy-weight technique to
calculate weights for the indicators, revealing their impact on the overall
results, as outlined in Eqs. (8) and (9):

Ej = −
1

lnn
∑n

i=1
pijlnpij (8)

wj =
1 − Ej

∑m
k=1(1 − Ek)

(9)

Where: Ej represents the entropy value of the indicator j;pijrepresents
the proportion of the city i in the indicator j;wjrepresents the weight of
the indicatorj;m is the number of indicators.

5. Ideal Solutions: Determine the highest and lowest values in the de-
cision matrix, indicating the positive and negative ideal solutions.

6. Distance Calculation: Measure the Euclidean distance from every city
to these ideal solutions.

D+
i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
x*ij − V+

j

)2
√
√
√
√ D−

i =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

j=1

(
x*ij − V−

j

)2
√
√
√
√ (10)

Where: D+
i and D−

i represent the Euclidean distances from the city i to
the positive and negative ideal solutions, respectively.

7. Comprehensive scores: calculate comprehensive scores for each city
using distance metrics and rank the cities based on these scores to
derive final quality indicators

Si =
D−

i
D+

i + D−
i

(11)

Where: Sirepresents the comprehensive score of the city i, which
corresponds to the quality index of that city.

3.5. Spatial lag regression analysis

This study employs a spatial lag regression model to conduct spatial
regression analysis on the calculated freight traffic accessibility. The
spatial lag model is based on the premise that the dependent variable in
a region is influenced not only by its inherent factors but also by the
factors of neighboring regions. This model accounts for the influence of
neighboring regions by introducing a spatial lag term. The expression of
the model is as follows:

Y = ρWy+Xβ+ ε (12)

Where:Yis the dependent variable, in this study referring to
accessibility;ρis the spatial lag coefficient;Wis the spatial weight matrix,
which measures the spatial correlation between regions. Typical weight
matrices include binary weights based on adjacency relationships and
continuous weight matrices based on distances. This study uses the

Fig. 8. Topology of major transportation networks in Hunan Province.
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“Queen contiguity” matrix, which is based on adjacency relationships;
Wyis the spatial lag term; Xis the independent variable matrix;β is the
coefficient of the independent variables;ε is the error term.

4. Results

4.1. Accessibility calculation and analysis

The results indicating the accessibility of 14 cities in Hunan Prov-
ince, calculated using Eq. (4). It is highlighted that Changsha, Xiangtan,
and Hengyang achieved the highest overall accessibility scores among
these cities. Yueyang and Zhuzhou, located in the northeastern province,
ranked fourth and fifth, respectively. In contrast, cities in the western
and southern regions of the province, including Yiyang, Changde, Loudi,
Chenzhou, Shaoyang, Huaihua, Yongzhou, Zhangjiajie, and Xiangxi
Tujia and Miao Autonomous Prefecture (Xiangxi), took the sixth to
fourteenth places. Cities in the central and eastern regions of Hunan
Province outperformed their counterparts in the western and southern
regions regarding accessibility. Fig. 9 displays the regional disparities in
accessibility, divided into five categories ranging from high to low. The
areas with the highest levels of accessibility exhibit transport hinter-
lands within the province, evidenced by the darkest colors in Fig. 9.
Other areas with lower accessibility ratings are displayed in progres-
sively lighter shades of color.

Several factors contribute to the variations in accessibility measured
throughout Hunan Province, including the characteristics of the freight
transport network and geographic features. Cities like Changsha, the
provincial capital and a central hub of economic activity, exhibit higher
levels of accessibility, likely due to the well-developed transport infra-
structure and the convenient transportation options. Similarly, Xiang-
tan, a key industrial city in the province, also boasts excellent
accessibility. The region’s stronger economy also contributes to its
accessibility.

In contrast, cities such as Zhangjiajie and Xiangxi exhibit limited
accessibility. These regions are typically located in remote areas char-
acterized by mountainous terrains or intricate river networks, posing
significant challenges to infrastructure development and transportation
network improvements. However, Zhuzhou is an exception. Despite its
strategic location and substantial economic significance in Hunan
Province, its accessibility ranking does not align with conventional ex-
pectations, suggesting that factors other than economic prominence and

geographic positioning might influence its accessibility.

4.2. nalysis of influencing factors

This section will examine the distribution of spatial accessibility in
major cities of Hunan Province and evaluate its relationship with
regional freight transport. Two widely used spatial analysis indicators
are regional population and regional GDP. A spatial lag model is con-
structed to assess the influence of regional truck trips, population size,
and GDP on freight accessibility. To ensure alignment with the freight
data, we acquired population and GDP data from the Hunan Statistical
Yearbook (HPPGP, 2023), relating to 2021.

Prior to modeling, it is essential to assess multicollinearity among the
three selected independent variables: truck trips, population, and GDP.
Multicollinearity may lead to inaccurate parameter estimations, unsta-
ble models, and diminished explanatory power. This study calculated
the variance inflation factors (VIF) for these independent variables to
identify potential multicollinearity. The obtained VIF values are 4.72 for
truck trips, 3.42 for population, and 5.87 for GDP, all below the
commonly used threshold of 10. The estimation of VIF indicates the
absence or presence of weak multicollinearity among these independent
variables, which is not expected to affect the fitting results of the model
significantly.

The results of the spatial lag model are presented in Table 3.
The spatial lag model applied in this study fits well, as evidenced by

the high pseudo R2 value, which signifies strong explanatory power of
the spatial lag effects, and a high log-likelihood value. Furthermore, the
precision of the model’s regression coefficients is evident from the low
standard errors. Additionally, the Akaike Information Criterion (AIC)
and Schwarz Criterion (SC) values further confirm the model’s aptness
in explaining the interrelationships among the variables.

The results presented in Table 3 indicate that GDP and truck trips
significantly impact accessibility, while population and the spatial lag
term do not (P > 0.05). Moreover, an increase in GDP and truck trips
correlates with improved accessibility. A higher truck trips may indicate
an increase in goods transit, underscoring the significance of inter-city
connections. Similarly, regions with higher GDP enjoy larger markets
and extensive commercial activities, leading to heightened movement of
goods and services via transportation networks.

Population and the spatial lag term have a negative impact on
accessibility. An increased transportation demand, often accompanying
high population densities, can lead to traffic congestion and added
burdens on transportation systems, thereby diminishing accessibility.
More vehicles on the road due to high population density can result in
traffic congestion and longer commute times, reducing the overall effi-
ciency in reaching destinations. However, the spatial lag term’s insig-
nificance indicates that the accessibility in neighboring regions has a
negligible or limited impact on the accessibility within the study area.

Fig. 9. Spatial distribution of accessibility in Hunan Province.

Table 3
Output results of the spatial lag model.

Variable Coefficient Standard
Error

Z-Score P-Value

Truck Trips 0.0001162 0.0000222 5.2429869 0.000002
GDP 0.0000332 0.0000064 5.2013557 0.000002

Population − 0.0001156 0.0000714 − 1.6177391 0.1057188
Constant Term − 0.0353190 0.0208609 − 1.6930760 0.0904410
Spatial Lag Term − 0.0196004 0.0359035 − 0.5459188 0.5851218

Pseudo R2 0.9687
Spatial PseudoR2 0.9673
Estimated Standard

Error 0.022

Log Likelihood
Value 33.334

AIC − 56.669
SC − 53.473
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4.3. Policy implications

Previous research indicates that the spatial distribution of freight
traffic accessibility is significantly influenced by inter-city freight flow
and GDP. Despite Zhuzhou’s advantageous central location in Hunan
Province and its relatively high level of economic development, its
accessibility ranking is not prominent. This suggests that the trans-
portation network surrounding Zhuzhou is underdeveloped, or that the
spatial distribution of the road network in its vicinity requires further
optimization to align with Zhuzhou’s favorable geographical and eco-
nomic status. To address this issue, the government can take the
following measures:

1. Enhance road network construction. The government should priori-
tize the development of the transportation network around Zhuzhou,
improving both the quantity and quality of the road network to
enhance the city’s traffic accessibility and logistics efficiency.

2. Promote cross-regional cooperation. The government can facilitate
cooperation between Zhuzhou and neighboring cities to jointly build
an efficient freight network and promote regional economic
development.

3. Implement supportive policies. The government can formulate sup-
portive policies, providing financial support and policy incentives for
transportation infrastructure construction, and encouraging enter-
prises to invest in related fields.

5. Conclusions

Improving regional freight accessibility is crucial for economic
development. This study focused on evaluating the accessibility of road
freight transport in Hunan Province, China, by analyzing freight tra-
jectory data. A spatial lag model was employed to investigate the re-
lationships between regional freight accessibility and critical factors
such as truck trips, population, and GDP.

After identifying stop points, this study developed a process for
extracting truck trips from truck trajectory data in Hunan Province. A
comprehensive analysis was then conducted to assess the strength of
freight connectivity between regions, examining both grid-level and
macro-level perspectives. The results reveal a concentration of freight
traffic in Changsha, which extends to surrounding cities such as
Yueyang, Zhuzhou and Xiangtan. Notably, Changsha emerges as a pri-
mary hub for freight connections, especially with Yueyang and
Xiangtan.

A comprehensive model was utilized, resulting in accessibility
rankings for cities in the province. Changsha, Xiangtan, and Hengyang
ranked as the top three cities The accessibility rankings in Hunan
Province reflect a pattern where cities in the central and eastern regions
generally receive higher ratings, forming a central peak with Changsha
as the core, with the notch gradually decreasing towards the outside.
Notably, despite its geographical advantages, Zhuzhou did not achieve a
high ranking in terms of accessibility.

This study examines the key factors influencing the spatial distri-
bution of freight accessibility in Hunan Province using a spatial lag
model. The findings suggest that the spatial lag variable has a negligible
impact on accessibility. It can be concluded that the spatial dependence
is not a pronounced factor in the distribution of freight accessibility in
the province. Instead, the study finds that accessibility is primarily
related to the spatial distribution of the road freight network and road
truck trips, which are the primary determinants spatial distribution of
accessibility.

Improved accessibility can significantly enhance communication and
collaboration among cities, expedite the movement of people and goods,
and foster economic growth. In regions with limited accessibility,
increasing investment in transportation infrastructure, upgrading
transport conditions, and improving accessibility are essential for
advancing regional economic development and social progress.

Although this study proposes a valid model for evaluating accessibility,
it still has limitations. One notable limitation is the need to consider
differences in freight transport characteristics between intra-provincial
and cross-border transport. Future research should aim to distinguish
and identify the impacts of various factors on freight accessibility more
precisely. Employing additional methods and data to investigate these
dynamics thoroughly will be significant. A more profound comprehen-
sion of the influencing mechanisms is crucial for enhancing freight
accessibility.
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