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A B S T R A C T

This study delved into the shear and sliding performances of RC shear walls subjected to combined axial tension
and lateral shear, which may occur at the bottom of high-rise buildings under strong earthquakes. An extensive
database comprising 41 RC shear walls tested under tension-shear was established, and the tests were categorized
based on their failure modes. The study evaluated existing shear and sliding resistance models based on the
collected database and introduced novel models for both shear and sliding resistances. The coefficients of
variation for ratios of tested-to-predicted capacities of the proposed shear and sliding models are 0.18 and 0.24,
respectively, significantly lower than those of the existing shear models and sliding models. A parametric analysis
was conducted on the proposed models and the code models, and finite element results were used for verifi-
cation. The results indicated that the proposed models not only effectively captured the influence of shear span-
to-depth ratio, concrete strength, reinforcement ratios, and axial tensile force on the shear and sliding capacities
of RC shear walls, but also well reflected the transition of shear and sliding failure modes. Furthermore, a nu-
merical analysis was conducted to explore the impact of flange width on the shear capacity of shear walls. The
numerical results confirmed that the proposed shear model effectively reflects the enhanced shear capacity due
to the presence of flanges. However, predictions by ACI 318–19 and JGJ 3–2010 noticeably underestimated this
effect.

1. Introduction

Reinforced concrete (RC) shear walls are extensively utilized in high-
rise buildings as vital components for resisting seismic and wind loads.
They primarily withstand axial (compression or tension) forces, hori-
zontal shear, and moments. Typically, the wall piers are subjected to an
internal force state of compression-shear-bending. However, with the
increasing height of modern buildings, shear walls may experience
tension-shear-bending under intense seismic loads [1,2]. As shown in
Fig. 1(a), when the coupling ratio of coupled shear walls is relatively
high, the axial tensile force induced by shear forces of coupling beams in
one bottom wall pier may exceed the axial compression generated by
gravity loads. As shown in Fig. 1(b), under bidirectional seismic loads,
wall piers of a core wall structure may experience the
tension-shear-bending state due to out-of-plane moments and in-plane
shear.

A notable failure in RC shear walls under axial tension occurred
during the 8.8-magnitude earthquake in Chile on February 27, 2010,
leading to the collapse of the 15-story Torre Alto Rio building [3]. While
the precise causes of the building’s overall collapse and the extensive
damage to the shear walls on the first floor remain inconclusive [4–6],
an inference can be drawn from the concentrated locations of steel
rupture and anchorage failure on one side of the building. This suggests
that the shear walls on that side were in a state of tension-shear-bending
at the time of failure. .
A large number of shear performance tests [7–18] on RC shear walls

under compression have been conducted, and scholars [19–26] have
also established shear test databases for RC shear walls. Previous
compression-shear tests indicate that RC shear walls controlled by shear
failure generally exhibit poor ductility and energy dissipation capabil-
ities. After peak shear loads, there is a significant degradation in stiffness
and strength. The shear performance is influenced by concrete strength,
axial compression ratio, aspect ratio (or shear span-to-depth ratio),
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boundary elements, and reinforcement ratio.
Research on RC shear walls under axial tension is relatively limited.

In recent years, Wang et al. [27], Ren et al. [28], Xie [29], Ji et al. [1,30,
31], Nie et al. [2], Yao et al. [32], and Wei et al. [33] conducted over
forty tests on RC shear walls under the tension-shear state. Ke et al. [34]
investigated the behavior of composite steel reinforced concrete (SRC)
walls under tension-shear. The tension-shear test results indicate that an

increase in axial tension significantly reduces the shear capacity, lateral
stiffness, and energy dissipation capacity of shear walls. However,
compared to shear walls failed in shear under axial compression, shear
walls under the tension-shear state show an improvement in ultimate
deformation capacity and exhibit better ductility. Nevertheless, existing
experimental studies are limited to rectangular cross-section specimens,
and there is a lack of research on the influence of flanges on the shear
performance of RC shear walls under axial tension.
There is insufficient research on the failure mechanisms of shear

walls under tension-shear conditions, and reliable shear and sliding
capacity models are lacking. Existing shear and sliding models are
mainly established for shear walls under shear-compression conditions.
Although the shear and sliding strength models in structural design
codes or standards can also be used for RC shear walls under tension-
shear, their accuracy and safety have not been fully verified by suffi-
cient experimental results.
Existing shear strength formulas for RC shear walls are mostly semi-

empirical formulas based on the truss model. These formulas typically
consider shear strength as the combined contribution of concrete and
horizontal distributed reinforcement. The former is usually empirically
fitted based on experimental data, while the latter is quantified based on
the truss model. Design codes ACI 318–19 [35] and JGJ 3–2010 [36]
generally do not provide separate shear strength equations for RC shear
walls subjected to axial tension, but rather adjust the shear strength
equations for shear walls under axial compression to account for the
axial tension effect. Additionally, some scholars [2,37,38] have pro-
posedmodifications to existing code formulas specifically for shear walls
subjected to axial tensile loads.
When RC shear walls are subjected to significant axial tensile loads

coupled with cyclic lateral loads, it may lead to the formation of hori-
zontal cracks that penetrate the entire cross-section, ultimately resulting
in sliding failure. The sliding behavior of crack surfaces in reinforced

Nomenclature

a distance from the point of horizontal load action to the
bottom surface of the wall

Asb total area of boundary longitudinal reinforcement on both
sides

Asb1 area of boundary longitudinal reinforcement on one side
Asb,c area of compressive boundary longitudinal rebars
Ag gross area of the wall cross-section
As tr strut cross-sectional area
Asw total area of the vertical distributed web reinforcement
Asw,c, Asw,t areas of vertical web rebars under compression and

tension, respectively
Aw gross area of the shear wall web
be strut equivalent thickness
bf flange width of non-rectangular shear walls
bw web thickness of walls
c compressed zone height
dw effective height of wall cross-section
fc axial compressive strength of concrete
fc’ cylinder compressive strength of concrete
ft axial tensile strength of concrete
fy yield stress of steel rebar
fyh yield strength of horizontal distributed reinforcement
fyb yield strength of boundary longitudinal reinforcement
fyw yield strength of vertical distributed web reinforcement
hf flange thickness of non-rectangular shear walls
lw wall length in the horizontal direction
N axial force of walls
Nt target axial tensile load

Vdd dowel resistance of the vertical rebars
Vfd friction resistance
Vid shear resistance of inclined rebars
Vs, Vsl predicted shear and sliding strength of shear walls,

respectively
Vt measured peak shear load
z length of the internal lever arm
αc coefficient related to the axial force in ACI 318–19
βs strut effective coefficient
εbc, εwc maximum and minimum strains in compressive boundary

element, respectively
εbt, εwt maximum and minimum strains in tensile boundary

element, respectively
εyb tensile yield strain of boundary longitudinal rebars
ξ normalized neutral axis depth
ηc, ηs axial tensile ratios of concrete and rebars, respectively
θ angle between diagonal strut and boundary longitudinal

reinforcement
μ friction coefficient
ρb, ρbs boundary longitudinal reinforcement and stirrup ratios,

respectively
ρh , ρv horizontal and vertical distributed reinforcement ratios,

respectively
σs reinforcement stress
σsb,c average stress in the compressive boundary longitudinal

reinforcement
σsv average tensile stress of vertical reinforcement
σsw,c, σsw,t average stresses in compressive and tensile vertical web

reinforcement, respectively

Fig. 1. Shear walls subjected to tension-shear-bending: (a) coupled shear wall
under seismic loads; (b) wall core under bidirectional seismic loads.
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concrete structures is complex, and it is generally considered that the
aggregate interlock and the dowel action of steel reinforcement together
provide sliding resistances. Both the sliding strength formulas in ACI
318–19 and JGJ 3–2010 are based on the shear-friction theory, and their
forms are also consistent, differing only in the values assigned to the
friction coefficient and the axial force influence factor.
This paper established a tension-shear test database for RC shear

walls and conducted a comprehensive and systematic analysis of their
tension-shear performance. The tests were categorized based on re-
ported failure modes, and their typical load-transfer mechanisms were

demonstrated using refined finite element (FE) models. Existing shear
and sliding resistance models were evaluated based on the database, and
new shear and slidingmodels were proposed. Additionally, the impact of
shear wall flanges on shear capacity was analyzed using FE models, and
the predictions by the proposed shear model were validated.

Fig. 2. Torre Alto Rio Building: (a) photograph after collapse [3]; (b) locations of steel rupture and splice failure on first floor [4].

Table 1
Test database of RC shear walls under tension-shear.

Shear wall
Type

Authors and
Reference

Specimen
No.

lw×bw a/dw ρb ρbs ρh ρv fc’ Nt ηc ηs Vt Failure Mode
mm2 % % % % MPa kN kN

1 Wang et al.
[27]

SW− 1 1000 × 120 1.57 1.77 0.84 0.47 0.84 37.1 0 0.00 0.00 603 Shear
2 SW− 2 1.57 1.77 0.84 0.47 0.84 37.1 176 0.39 0.08 543 Shear
3 SW− 3 1.57 1.77 0.84 0.47 0.84 37.1 380 0.83 0.18 436 Shear
4 SW− 4 1.57 1.77 0.84 0.47 0.84 37.1 578 1.27 0.27 427 Shear
5 Ren et al.

[28]
RCW17T100 800 × 120 1.61 0.69 0.79 0.39 0.59 66.2 157 0.34 0.22 231 Shear-Compression

6 RCW17T150 1.61 0.69 0.79 0.39 0.59 60.8 235 0.52 0.33 203 Shear-Compression
7 RCW17T200 1.61 0.69 0.79 0.39 0.59 66.5 303 0.65 0.43 184 Sliding
8 RCW17T250 1.61 0.69 0.79 0.39 0.59 58.9 390 0.88 0.55 174 Sliding
9 RCW17T350 1.61 0.69 0.79 0.39 0.59 58.5 548 1.23 0.77 130 Sliding
10 RCW25T000 1.61 1.14 0.79 0.39 0.59 50.1 0 0.00 0.00 404 Shear-Compression
11 RCW25T200 1.61 1.14 0.79 0.39 0.59 40.5 415 1.14 0.39 324 Shear-Compression
12 RCW25T250 1.61 1.14 0.79 0.39 0.59 48.5 579 1.39 0.55 260 Shear-Compression
13 RCW25T300 1.61 1.14 0.79 0.39 0.59 49.7 708 1.67 0.67 212 Sliding
14 RCW25T350 1.61 1.14 0.79 0.39 0.59 44.6 809 2.06 0.77 181 Sliding
15 RCW25T400 1.61 1.14 0.79 0.39 0.59 44.4 941 2.40 0.89 164 Sliding
16 Ji et al.

[1]
SW1 1500 × 180 1.22 1.25 0.56 0.37 0.58 49.7 617 0.52 0.25 960 Shear-Sliding

17 SW2 1.22 1.25 0.56 0.37 0.58 50.1 1030 0.86 0.41 823 Shear-Sliding
18 SW3 1.22 1.25 0.56 0.37 0.58 50.2 1716 1.42 0.69 568 Shear-Sliding
19 SW4 1.22 1.25 0.56 0.37 0.58 44.8 2553 2.30 0.76 337 Sliding
20 SW5 1.22 1.25 0.56 0.37 0.58 45.9 3192 2.83 0.95 282 Sliding
21 SW6 1.22 1.25 0.56 0.37 0.58 43.7 0 0.00 0.00 1173 Shear
22 Cheng et al.

[30]
SW7 1500 × 180 1.22 0.51 0.56 0.37 0.58 25.7 1148 1.69 0.76 153 Bending

23 HSW1 2.21 0.50 0.56 0.56 0.58 33.6 322 0.38 0.21 200 Flexural-Sliding
24 HSW2 2.21 0.50 0.56 0.56 0.58 22.0 538 0.89 0.35 189 Flexural-Sliding
25 HSW3 2.21 0.50 0.56 0.56 0.58 30.2 897 1.16 0.58 144 Flexural-Sliding
26 HSW4 2.21 0.50 0.56 0.56 0.58 25.7 1291 1.90 0.84 87 Bending
27 Ji et al.

[31]
MSW1 1500 × 180 1.67 0.84 0.56 0.37 0.58 24.5 582 0.86 0.20 749 Shear

28 MSW2 1.67 0.84 0.56 0.37 0.58 33.9 1163 1.34 0.39 552 Flexural-Shear
29 MSW3 1.67 0.84 0.56 0.37 0.58 36.4 1745 1.90 0.59 403 Bending
30 MSW4 1.67 0.84 0.56 0.37 0.58 25.7 2327 3.32 0.78 331 Bending
31 Nie et al.

[2]
T00 1700 × 150 1.14 1.19 1.34 0.38 0.38 49.1 0 0.00 0.00 1507 Shear-Compression

32 T30 1.14 1.19 1.34 0.38 0.38 49.1 776 0.70 0.28 1154 Shear-Compression
33 T40 1.14 1.19 1.34 0.38 0.38 49.1 1034 0.93 0.37 1105 Shear-Compression
34 T50 1.14 1.19 1.34 0.38 0.38 49.1 1293 1.16 0.46 1008 Shear-Compression
35 Yao et al.

[32]
W1 800 × 150 0.97 0.76 1.34 0.38 1.05 46.3 382 0.78 0.34 499 Shear

36 W2 0.97 1.03 1.34 0.38 2.05 46.3 696 1.34 0.41 605 Shear
37 W3 0.97 1.03 1.34 0.38 2.05 43.6 1044 2.10 0.62 517 Shear
38 W4 0.97 1.03 1.34 0.38 2.05 43.6 1392 2.80 0.83 468 Bending
39 Wei et al.

[33]
W4 1000 × 150 0.54 0.23 0.74 1.16 1.16 29.4 525 1.25 0.63 696 Shear

40 W11 0.54 0.23 0.74 0.74 1.16 29.4 525 1.25 0.63 520 Shear
41 W13 0.54 0.23 0.74 1.67 1.16 28.0 525 1.30 0.63 890 Shear

Y.-B. Ding et al.
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2. Failure mode and load-transfer mechanism

2.1. Test database

This study compiled 41 existing tension-shear tests of RC shear walls
[1,2,27,28–33] (Table 1), all featuring rectangular cross-sections with
shear span ratios not exceeding 2.21. The reported primary failure
modes include flexural failure, shear failure (including shear and
shear-compression), and sliding failure.
When the shear span ratio is relatively large, or the longitudinal

reinforcement in the boundary elements is limited, shear walls are prone
to flexural failure. Flexural-controlled shear walls exhibit predominant
flexural deformations, demonstrating good ductility with plump hys-
teresis loops. Shear failure is more likely to occur in specimens with
smaller shear span-to-depth ratios or higher longitudinal reinforcement
ratios. The ductility of such shear wall specimens is relatively poorer
compared to flexural-controlled ones but better than specimens expe-
riencing shear failure in compression-shear tests. During shear failure,
significant horizontal displacement occurs along critical shear cracks,
with nearly all the horizontal distributed reinforcement intersecting
with the critical cracks yielding. Sliding failure tends to occur in shear
walls with higher axial tensile stresses, manifesting as significant lateral
movement along a horizontal crack. While these specimens exhibit good
ductility, their lateral load-carrying capacity is relatively low, and the
hysteresis loops show significant pinching, indicating poor energy
dissipation capability.
Additionally, the database includes a small number of shear wall

specimens that have been reported to exhibit combined failure modes
known as flexural-shear, flexural-sliding, and shear-sliding. For shear
walls controlled by flexural-shear or flexural-sliding, after the boundary
longitudinal rebars yield completely in tension, their flexural capacity
tends to stabilize. With further increased deformation of the specimens,
the shear or sliding capacity degrades faster than the flexural capacity.
When the shear or sliding capacity falls below the flexural capacity, the
shear walls transition from the flexural mechanism to the shear or
sliding mechanism, ultimately resulting in the shear or sliding failure.
The peak lateral resistances of shear walls with flexural-shear and

flexural-sliding failures are still determined by the flexural capacity.
Thus this study classifies them under flexural failure.
On the other hand, for shear walls controlled by shear-sliding failure,

significant diagonal cracks can be observed at the peak load, and the
specimen deformation is dominated by shear deformation. After
reaching the peak horizontal load, a horizontal sliding surface forms
under cyclic loading. The peak lateral resistance of specimens with
shear-sliding failure is determined by the ultimate shear capacity, so the
shear-sliding failure is categorized as shear failure in this study. Further
clarification on this failure mode will be provided in Section 2.2 through
a combination of experimental and FE results.
The database in Table 1 provides the cross-sectional dimensions

(wall length lw× wall thickness bw), the ratio of shear span length to
effective depth a/dw (from 0.54 to 2.21), the boundary longitudinal
reinforcement ratio ρb (from 0.23 % to 1.77 %), the boundary stirrup
ratio ρbs (from 0.56 % to 1.34 %), the horizontal distributed reinforce-
ment ratio ρh (from 0.37 % to 1.67 %), the vertical distributed web
reinforcement ratio ρv (from 0.38 % to 2.05 %), and the measured cyl-
inder concrete compressive strength fc’ (from 22.0 to 66.5 MPa) for each
specimen. Additionally, Nt represents the target axial tensile force,
which is the maximum value of axial force during the loading process; Vt
is the measured peak shear load. The axial tensile ratio of concrete, ηc, of
a cross-section under Nt equals Nt/((Ac+(Es/Ec)•(Asb+Asw))•ft), and the
axial tension ratio of rebars ηs equals to Nt/( fybAsb+fywAsw). Where Ac is
the area of concrete at the cross-section, Es and Ec are steel and concrete
elastic moduli, respectively; Asb and fyb are the total area and yield
strength of boundary vertical reinforcement, respectively; Asw and fyw
are the total area and yield strength of vertical distributed web rein-
forcement, respectively; ft is the axial tensile strength of concrete. In the
database, the range of the concrete tensile ratio ηc is 0 to 3.32, and for ηs,
it is 0 to 0.95.

2.2. Finite element modeling

To clarify the variations in the load-transfer mechanisms of shear
walls with different failure modes under tension-shear, the commercial
FE software ATENA was employed to simulate and analyze three shear

Fig. 3. Photographs of shear walls tested by Ji et al. [1]: (a) SW6, (b) SW2, and (c) SW4 at peak shear loads; (d) SW6, (e) SW2, and (f) SW4 after failure.

Y.-B. Ding et al.
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wall specimens (SW6, SW2, and SW4) tested by Ji et al. [1]. The target
axial tensile loads Nt for the selected specimens SW6, SW2, and SW4
were 0, 1030, and 2553 kN, respectively, with reported failure modes of
shear, shear-sliding, and sliding. For ease of comparison with numerical
results, Fig. 3 provides photographs of these specimens at peak shear
loads and after failure. In the figure, θd represents the lateral drift ratio,
which is equal to the lateral displacement at the loading point divided by

the vertical distance from the loading point to the top surface of the
ground beam.
In the numerical simulation of the shear wall specimens, concrete

was modeled using the fracture-plastic model [39], which combined
constitutive models for tensile (fracturing) and compressive (plastic)
behavior. The nonlinearities in the fracture-plastic concrete model,
including tensile softening after cracking and compressive harden-
ing/softening, are shown in Fig. 4(a) and (b) respectively. To better
simulate the post-cracking behavior of concrete, the Rankine failure
criterion with exponential crack opening law of Hordijk, and the Fixed
Smeared Crack Model were employed. The crack width was determined
based on the Crack Band method proposed by Bažant and Oh [40],
which also effectively controlled the sensitivity of meshing size [41]. In
compression, the Menetrey-Willam failure surface [42] is used for the
hardening/softening plasticity model. Steel reinforcement was modeled
by the bilinear hardening model. A bond-slip model between concrete
and steel reinforcement [43] based on the CEB-FIP model code (1990)
was also employed, as shown in Fig. 4(c). The influences of cracks on
concrete compressive strength and crack interface shear strength were
determined using the Modified Compression Field Theory (MCFT) [44,
45]. The detailed descriptions of these constitutive models can be found
in reference [46], and they were implemented in ATENA for the simu-
lation of the selected specimens. ATENA has been extensively validated
for reasonably simulating the shear behavior of concrete structures [41,
47–50].
Fig. 5 shows the finite element model of the specimens SW6, SW2,

and SW4. A 1/2 model was established using the symmetry of the
specimens, and the out of plane displacement of the symmetry plane was
constrained (Fig. 5(c)). Concrete was modeled using hexahedral solid
elements, and the rebar was modeled using truss elements with a
separate modeling method. Loading plates were modeled with quadri-
lateral solid elements and were tied to the surface of the loading beam.
The bottom of the foundation beam was fixedly constrained, and hori-
zontal displacement was applied at half the height of the rigid loading
plate. Vertical uniformly distributed stress was applied to the bottom of
the loading beam to simulate the axial tensile force. The concrete
element size for the wall was approximately 50 mm × 50 mm× 45 mm,
while the concrete element size for the loading and foundation beams
was 100 mm × 100 mm × 100 mm. In solving the nonlinear equations,
the Newton-Raphson method was used, combined with a line search
method to improve convergence efficiency. The convergence criteria
allowed a convergence error of 1 %, and the maximum number of iter-
ations per step was set to 30. In order to further improve computational

Fig. 4. Non-linearities in material constitutive relationships applied in nu-
merical simulation. (a) Tensile softening for concrete after cracking, (b)
Compressive hardening/softening for concrete, and (c) bond-slip relationship
between concrete and steel reinforcement.

Fig. 5. Finite element model of specimens SW6, SW2, and SW4: (a) concrete elements and boundary conditions, (b) rebar elements, and (c) out-of-plane constraint.

Y.-B. Ding et al.
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efficiency, the finite element model was subjected to horizontal mono-
tonic loading, with each step of horizontal loading controlled by a preset
displacement.
Fig. 6 illustrates the skeleton curves of shear load-horizontal

displacement for the selected shear walls (where "+" and "-" denote
the positive and negative directions in cyclic tests, respectively) and the
shear load-horizontal displacement curves obtained from FE models
under monotonic loading. It can be observed that there is a good
agreement between the two. The average values of the tested peak shear
loads of the specimens SW6, SW2, and SW4 in the two directions are
1225 kN, 814 kN, and 424 kN, respectively, while the corresponding
numerical results are 1198 kN, 716 kN, and 404 kN. The prediction

errors are − 2.21 %, − 11.97 %, and − 4.92 %, indicating that the FE
models can well simulate the load-carrying and overall deformation
capacities of shear walls under different target axial tensile loads.
Fig. 7(a-c) illustrates the crack distribution of the FE models for the

selected specimens after failure. For the specimen SW6 with zero axial
tension, significant diagonal cracks developed, and horizontal cracks at
the bottom of the wall were effectively controlled, as shown in Fig. 7(a).
The horizontal deformation of SW6 was concentrated mainly at the di-
agonal cracks, indicating a typical shear failure. For the specimen SW2
with the target axial load of 1030 kN, both diagonal cracks and bottom
horizontal cracks were prominent (Fig. 7(b)), and the horizontal
deformation of SW2was dominated by shear deformation at the inclined
cracks and sliding deformation at the bottom horizontal cracks. These
observations are consistent with the reported shear-sliding failure mode
for WS2. Specimen SW4, with the maximum target axial load, experi-
enced sliding failure during the test. The FE model also exhibited pre-
dominant bottom horizontal cracks, while diagonal cracks were
somewhat suppressed, as shown in Fig. 7(c). Horizontal deformation of
the specimen was concentrated at the bottom sliding cracks. By
comparing Fig. 7(a)-(c) and Fig. 3(d)-(f), it validates that the applied FE
models can effectively simulate the observed crack patterns and failure
modes of the selected shear walls subjected to different axial tensile
loads in the test.
Based on the validated FEmodels, the principal stress distribution for

the specimens SW6, SW2, and SW4 at peak loads are presented in Fig. 7
(d)-(f). It can be observed that when the target axial force is zero, the
main shear load-transfer path for specimen SW6 is a significant diagonal

Fig. 6. Shear load-lateral displacement curves of selected shear walls.

Fig. 7. Numerical results of selected shear walls: crack distribution of (a) SW6, (b) SW2, and (c) SW4 after failure; principal compressive stress distribution of (d)
SW6, (e) SW2, and (f) SW4 at peak shear loads.

Y.-B. Ding et al.
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strut. This diagonal strut has a relatively large width, and the principal
compressive stress values are relatively high, with the maximum prin-
cipal compressive stress occurring at the bottom compression zone of the
wall. As the target axial tensile load increases, as shown for specimens
SW2 and SW4 in Fig. 7(e) and (f), the diagonal strut is gradually
weakened, manifested by the decreasing width and stress values of the
diagonal strut. For specimen SW4 with the maximum target axial tensile
load, which failed in sliding, the diagonal strut is almost nonexistent
within the wall at the peak shear load. Therefore, it can be assumed that
the primary shear-transfer path for shear walls controlled by shear
failure is the diagonal strut, which weakens with the increasing axial
tension on the wall. On this basis, a mechanical model that considers the
influence of axial tensile loads on the shear capacity of RC shear walls
will be proposed in the next section.

3. Shear and sliding strength prediction models

3.1. Existing shear models

The shear strength, Vs, ACI, of RC shear wall in the American code ACI
318–19 [35] (hereinafter referred to as ACI) is composed of the shear
carried by concrete and horizontal distributed reinforcement, taking
into account the influence of axial tension on the concrete resistance.

Vs,ACI =
(

αc

̅̅̅̅

fʹc
√

+ fyhρh

)
Aw ≤ 0.66

̅̅̅̅

fʹc
√

Aw (1)

αc = 0.17
(

1 − 0.29
N
Ag

)

≥ 0 (2)

where αc is a coefficient related to the axial force, and when the axial
force is in tension (positive value), its value is determined according to
Eq. (2); Aw represents the gross area of the shear wall web; fyh and ρh
represent the yield strength and ratio of horizontal distributed rein-
forcement; fc’ is the cylinder concrete compressive strength, and Ag is the
gross area of the wall cross-section. It should be noted that in this paper,
the axial force N is consistently considered positive for tension and
negative for compression.
In the Chinese code JGJ 3–2010 [36] (hereinafter referred to as JGJ),

the formula for the shear resistance VJGJ of RC shear walls is as follows:

Vs,JGJ =
1

a/dw − 0.5

(

0.4ftbwdw − 0.1N
Aw

Ag

)

+ 0.8fyhρhbwdw (3)

where a/dw is the shear span-to-depth ratio, with upper and lower limits
taken as 1.5 and 2.2, respectively; ft is the axial tensile strength of
concrete; bw is the web thickness of walls; dw is the effective height of the
wall cross-section.
Based on the JGJ shear model, Xiao et al. [37] introduced the

influence of boundary longitudinal reinforcement and proposed the
following equation for the shear strength Vs, Xiao:

Vs,Xiao =
1

a/dw − 0.5

(

0.4ftbwdw − 0.2N
Aw

Ag

)

+0.8fyhρhbwdw +0.04Asb1fyb

(4)

where Asb1 is the area of boundary longitudinal reinforcement on one
side (when the areas of boundary longitudinal reinforcement on both
sides are different, the smaller one is used), and fyb is the yield strength
of the boundary longitudinal reinforcement.
Cheng [38] made modifications to the axial force term in the JGJ

shear equation and incorporated the contribution of vertical reinforce-
ment (including boundary longitudinal reinforcement and vertical
distributed web reinforcement) to the shear strength, Vs, Cheng, of RC
shear walls.

where the lower limit for the shear span-to-depth ratio a/dw is 1.5; Asb
represents the total area of boundary longitudinal reinforcement on both
sides; Asw and fyw are the total area and yield strength of the vertical
distributed web reinforcement, respectively.
Eq. (6) proposed by Nie et al. [2] takes into account the dowel action

of vertical reinforcement on the shear strength Vs, Nie, and the adopted
axial force influence factor is related to material strength and rein-
forcement ratio.

3.2. Proposed shear model

According to the numerical analysis in Section 2.2, the diagonal strut
is the main shear-transfer path for shear walls controlled by shear fail-
ure. Yi et al. [51] proposed equations for the shear strength of squat
shear walls under the compression-shear condition, which was derived
based on the cracking strut-and-tie model [52,53]. The influences of
stirrups, concrete strength, and size effect on shear strength were
considered through the effective strut coefficient βs. The effects of axial
force and boundary longitudinal reinforcement were considered
through the strut width (determined based on the compression zone
height at the wall bottom cross-section). Additionally, the equations
took into account the influence of the shape of the boundary members
through the equivalent strut thickness (in the out-of-plane direction of
the wall).
For RC shear walls controlled by shear failure, the main load-transfer

paths under both tension-shear and compression-shear states are diag-
onal struts, but the width and effective compressive strength of the struts
differ. Therefore, it is possible to derive the shear strength equations of
shear walls under tension-shear based on the cracking strut-tie model.

Vs,Cheng =
1

a/dw − 0.5

(

0.4ftbwdw − 0.25N
Aw

Ag

)

+ 0.8fyhρhbwdw +
0.15
a/dw

(
Asbfyb +Aswfyw

)
(5)

Vs,Nie = max
(
0.508
a/dw

− 0.266,0
)(

Asbfyb + Aswfyw
)
+ max

(

0.473 − 0.1a/dw,0
)

ftbwdw

+0.7fyhρhbwdw −

(

0.113+ 0.501
ftbwdw

Asbfyb + Aswfyw

)

N
(6)
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Building upon the equations proposed by Yi et al. [51], the influence of
axial tensile force on the compression zone height c is quantified to
account for its impact on the shear strength. Additionally, for specimens
with a high vertical web reinforcement ratio or a low boundary longi-
tudinal reinforcement ratio, the original equations underestimate the
actual shear strength of these shear wall specimens by neglecting the
effect of vertical web reinforcement. Therefore, by considering the in-
fluence of vertical web reinforcement on c, this paper proposes the
following modified equations for the shear strength Vs, p.

Vs,p = βsf
ʹ
cAstr sin θ = βsf

ʹ
ccbe sin θ (7)

βs = 0.5(1+ 100ρh)
0.8
(
500
dw

)0.2(30
fʹc

)0.5

≤ 0.85
(

1 −
fʹc
250

)

(8)

(
c
dw

)2

+

[

1.5
hf
dw

(
bf
bw

− 1
)

+1.5
N

bwdwfʹc
+ 600

ρb + ρv
fʹc

]
c
dw

− 600
ρb + 0.5ρv

fʹc
= 0 (9)

be = bw
[

1+0.5
hf
c

(
bf
bw

− 1
)]

(10)

where βs is the strut efficiency coefficient; Astr is the cross-sectional area
of the strut; be represents the equivalent thickness of the strut; c repre-
sents the compression zone height at the bottom cross-section of the wall
and is used to characterize the width of the strut at the bottom of the
wall; θ is the angle between the diagonal strut and boundary longitu-
dinal reinforcement, and can be taken as arctan((lw-c/2)/a), where lw is
the length of the wall in the horizontal direction, and a is the distance
from the application point of the lateral shear load to the bottom surface
of the wall; hf and bf represent the thickness and width of the flange,
respectively; ρb represents the ratio of boundary longitudinal rein-
forcement on one side, which is equal to Asb1/(bwdw); ρv is the vertical
distributed web reinforcement ratio.

3.3. Existing sliding models

JGJ specifies that the sliding strength Vsl,JGJ of the horizontal con-
struction joints for shear walls with a seismic performance level of Level
I should comply with the requirements of Eq. (11).

Vsl,JGJ = 0.6
(
Asbfyb +Aswfyw

)
− 0.8N (11)

ACI specifies that when the reinforcement is perpendicular to the
shear plane, the sliding strength Vsl,ACI of the shear plane is calculated
according to the following equation:

Vsl,ACI = μ
(
Asbfyb +Aswfyw − N

)
≤ min

[
0.2fʹcAg,

(
3.3+0.08fʹc

)
Ag,11Ag

]

(12)

where μ is the friction coefficient. According to ACI, for concrete placed
monolithically, the friction coefficient μ is recommended to be taken as
1.4. However, this value appears to be too large for the sliding surface of
shear walls subjected to combined axial tension and cyclic lateral loads.
Therefore, following the concrete-to-concrete friction coefficient under
cyclic actions in Eurocode 8 [54], μ is taken as 0.7.
The sliding strength Vsl,EC8 of a potential sliding plane in Eurocode 8

[54] is composed of friction resistance Vfd, shear resistance of inclined
rebars Vid, and dowel resistance of the vertical rebars Vdd.

Vsl,EC8 = Vdd+Vid+Vfd (13)

Vdd = min
[
1.3
(
Asb

̅̅̅̅̅̅̅̅̅

fcfyb
√

+Asw

̅̅̅̅̅̅̅̅̅̅

fcfyw
√ )

, 0.25
(
Asbfyb +Aswfyw

)]
(14)

Vfd = min
(

μ
[(

Asbfyb +Aswfyw − N
)

ξ+
MEd

z

]

, 0.5ηfcξAw
)

(15)

where fc is the concrete axial compressive strength; the friction coeffi-
cient μ is 0.7 for rough surfaces of concrete-to-concrete under cyclic
actions; ξ is the normalized neutral axis depth and equals to c/lw, where c
can be determined according to Eq. (9); η is a coefficient equal to 0.6
(1 − fc/250);MEd is the design bending moment from the analysis for the
seismic design situation, which is assumed to be zero in this study; and z
is the length of the internal lever arm. The expression for Vid is not
provided because the specimens in the collected database were not
reinforced with inclined rebars.
Taking into account the possibility of asynchronous yielding of

boundary longitudinal rebars and vertical web rebars, Xiao et al. [37]
made modifications to the JGJ sliding model and proposed the following
equations.

Vsl,Xiao = max

⎛

⎜
⎜
⎜
⎜
⎝

0.6Asw
(
fyw − σsv

)

0.6Asb
(
fyb − σsv

)

0.6
(
Asb + Asw

)[
min

(
fyb, fyw

)
− σsv

]

⎞

⎟
⎟
⎟
⎟
⎠

(16)

where σsv represents the average tensile stress of the vertical reinforce-
ment, which is equal to N/(Asb+Asw).

3.4. Proposed sliding model

For sliding failure-controlled RC shear walls, both the friction resis-
tance of the concrete and the dowel action of vertical rebars on the
sliding surface contribute to the sliding strength. From the perspective of
shear-transfer mechanisms, the physical basis of the sliding model in
Eurocode 8 is more robust. However, this model does not consider the
weakening effect of axial stress generated by internal forces of shear
walls on the dowel resistance of vertical rebars. Therefore, it over-
estimates the sliding strength of RC shear walls under tension-shear
states, which is verified in Section 4.2.
Chen et al. [52,53] proposed a simplified reduction factor (1-σs/fy) to

consider the interaction between the tensile force and the dowel force of
steel bars, where σs and fy are the axial stress and yield stress, respec-
tively. This factor is adopted to account for the adverse effects of
bending moments and axial forces at the sliding plane of shear walls on
the dowel action of vertical reinforcement. To avoid determining the
rebar stress through complex iterative calculations, it is assumed that all
boundary longitudinal rebars on the tensile side have reached the
yielding state, i.e., the minimum strain εwt within the tensile boundary
element is equal to the tensile yield strain εyb of the boundary longitu-
dinal rebars, as shown in Fig. 8. The reasonableness of this assumption
lies in the fact that if not all the tensile boundary longitudinal rebars

Fig. 8. Vertical strain assumption of sliding plane in proposed sliding model.
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have yielded, the sliding capacity decreases with increasing strain in the
tensile rebars. If the sliding failure occurs after all the tensile bars have
yielded, the peak shear load-carrying capacity of the shear wall is
determined by the ultimate flexural capacity, indicating the
flexural-sliding failure mode. Therefore, the sliding capacity corre-
sponding to the state shown in Fig. 8 provides a reasonable but con-
servative estimate of the sliding resistance of RC shear walls failed in
sliding.

When the strain εwt and the compressive zone height c (obtained from
Eq. (9)) are known, the maximum strain εbc and minimum strain εwc in
the compressive boundary column can be determined based on the plane
section assumption, as illustrated in Fig. 8. Consequently, the average
stress in the compressive boundary longitudinal rebars σsb,c (=Min
((εbc+ εwc)Es/2, fyb)), the average stress in the compressive vertical web
rebars σsw,c (=Min(εwcEs/2, fyw)), and the average stress in the tensile
vertical web rebars σsw,t (=Min(εwtEs/2, fyw)) can be calculated. On this
basis, the shear wall sliding strength Vsl,p can be predicted according to
Eqs. (17) and (18), where the frictional resistance Vfd is computed using
Eq. (15). It should be noted that, as the specimens in the collected
database were not reinforced with inclined rebars, the proposed sliding
model does not consider the contribution of inclined rebars to the sliding
resistance.

Vsl,p = Vdd,p+Vfd (17)

Fig. 9. Evaluation results of shear models for RC shear walls: (a) shear models of JGJ and ACI; (b) shear models by Xiao et al. [37], Cheng [38], and Nie et al. [2]; (c)
proposed shear model.

Table 2
Statistical results for evaluation of shear models.

Model Average Maximum
Value

Minimum
Value

Standard
deviation

Coefficient
of variation

ACI 318 − 19 2.03 5.09 1.06 1.09 0.53
JGJ 3 − 2010 1.70 3.84 0.88 0.74 0.43
Xiao 2018 1.93 6.00 0.92 1.18 0.61
Cheng 2019 1.33 3.54 0.78 0.60 0.46
Nie 2020 1.32 3.27 0.62 0.57 0.44
Proposed 1.17 1.56 0.72 0.21 0.18

Vdd,p = min

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1.3

⎡

⎣Asb,c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fc

(

1 −
σsb,c

fyb

)

fyb

√
√
√
√ + Asw,t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fc

(

1 −
σsw,t

2fyw

)

fyw

√
√
√
√ + Asw,c

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

fc

(

1 −
σsw,c

2fyw

)

fyw

√
√
√
√

⎤

⎦,

0.25

[

Asb,c

(

1 −
σsb,c

fyb

)

fyb + Asw,t

(

1 −
σsw,t

2fyw

)

fyw + Asw,c

(

1 −
σsw,c

2fyw

)

fyw

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(18)
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where Asb,c represents the area of compressive boundary longitudinal
rebars, and Asw,c, and Asw,t represent the areas of vertical web rebars
under compression and tension, respectively. When calculating the
reduction factor (1-σs/fy), if the reinforcement stress σs is in tension, the
corresponding yield stress fy is taken as the tensile yield stress, and vice
versa. The value of the reduction factor lies between 0 and 1.

4. Model evaluation and parametric analysis

4.1. Evaluation of shear models

Twenty-four shear wall specimens that experienced shear failure
(including shear, shear-compression, and shear-sliding) were selected
from the collected database for the evaluation of the existing and pro-
posed shear models, with the results presented in Fig. 9 and Table 2. It
should be noted that different models utilize different characteristic
values for concrete strength. When evaluating these models based on
experimental results, conversions between the compressive strength of
different concrete specimens and between the concrete tensile and
compressive strengths were determined using a simplified method pro-
posed by Reineck et al. [55].
Fig. 9(a) and (b) present the evaluation results of the selected

existing shear models (including the ACI, JGJ, Xiao, Cheng, and Nie
shear models mentioned in Section 3.1). It can be observed that their
ratios of the tested-to-predicted shear strength Vt/Vs decrease signifi-
cantly with the increase of the shear contribution by horizontal
distributed rebars fyhρhbwdw, which is adopted by each of the existing
shear models. This indicates that the existing shear models cannot
accurately reflect the influence of horizontal distributed rebars on the
shear strength of shear walls under tension-shear. The ratios Vt/Vs of
ACI, JGJ, Xiao, and Cheng shear models significantly increase with the

increase of the concrete tensile ratio ηc, indicating that these models
overestimate the adverse effect of axial tension on shear strength. The
ratio Vt/Vs of the Nie shear model increases with the increase of the
shear span-to-depth ratio a/dw, indicating that it cannot accurately
reflect the influence of a/dw on shear strength. On the other hand, the
coefficient of variation (COV) of Vt/Vs for the existing models ranges
from 0.43 to 0.61, indicating a significant variability in their predictions
compared to test results. The maximum values of Vt/Vs for the ACI and
Xiao shear models are 5.09 and 6.00, respectively, while the minimum
value for the Nie shear model is only 0.62, suggesting that excessive
variability can lead to overly conservative or unsafe predictions.
As shown in Fig. 9(c), the Vt/Vs of the proposed shear model does not

exhibit a significant upward or downward trend with variations in the
shear span ratio a/dw, concrete compressive strength fc’, and concrete
tensile ratio ηc. This indicates that the proposed shear model can effec-
tively capture the influence of shear span ratio, concrete strength, and
axial tensile force on the shear strength of RC shear walls. Even though
the proposed shear model does not directly adopt fyhρhbwdw like the
existing shear models, its Vt/Vs does not significantly change with an
increase in fyhρhbwdw. This validates the rationale behind considering the
enhancement of effective compressive strength of diagonal struts due to
horizontal distributed reinforcement, indirectly accounting for the
contribution of horizontal distributed reinforcement to the shear
strength of shear walls. Moreover, the COV of Vt/Vs for the proposed
shear model is only 0.18, significantly lower than those of the existing
shear models, indicating its predictions demonstrate the highest
accuracy.

4.2. Evaluation of sliding models

Using eight specimens that experienced sliding failure in the
collected database, an evaluation was conducted on the selected existing
sliding models. It should be noted that the JGJ sliding model predicted
negative values for the sliding strength of several specimens, indicating
an overestimation of the adverse effect of axial tension on sliding
strength. This renders the predictions by the JGJ sliding model incom-
parable directly with other models. Thus, the evaluation results for the
JGJ sliding model are not provided.
The evaluation results for the ACI, EC8, and Xiao sliding models are

presented in Fig. 10 (a) and Table 3. It can be observed that the pre-
dictions by ACI and Xiao sliding models are relatively close. With an
increase in concrete strength fc’ and concrete tensile ratio ηc, ratios of the

Fig. 10. Evaluation results of sliding models for shear walls: (a) existing sliding models; (b) proposed sliding model.

Table 3
Statistical results for evaluation of sliding models.

Model Average Maximum
Value

Minimum
Value

Standard
deviation

Coefficient
of variation

ACI 318 − 19 1.23 2.65 0.61 0.74 0.60
Eurocode 8 0.59 0.77 0.33 0.17 0.29
Xiao 2018 1.56 3.30 0.79 0.85 0.54
Proposed 1.18 1.42 0.70 0.29 0.24
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tested-to-predicted sliding strength Vt/Vsl show a certain trend of
decrease and increase, respectively. This indicates that the ACI and Xiao
sliding models cannot accurately reflect the influence of concrete
strength and axial tension on the sliding capacity of shear walls. On the
other hand, the EC8 sliding model significantly overestimates the sliding
capacity of specimens, with a mean value of Vt/Vsl only reaching 0.59.
Additionally, the EC8 sliding model fails to accurately reflect the con-
tributions of the shear-span ratio and the yield capacity of vertical re-
inforcements (fybAsb+fywAsw) to the sliding capacity. The predictions of
the ACI and Xiao sliding models are relatively more conservative than
the EC8 sliding model, with mean values of Vt/Vsl being 1.23 and 1.56,
respectively. However, both exhibit significant variability in their pre-
dictions, reflected in COVs exceeding 0.5. Overall, these three existing
sliding models cannot effectively predict the sliding resistance of shear
walls subjected to combined axial tension and lateral shear.
As shown in Fig. 10 (b), the ratios of tested-to-predicted sliding

strength Vt/Vsl for the proposed sliding model do not exhibit significant
changes with variations in a/dw, fc’, fybAsb+fywAsw and ηc. This indicates
that the model can effectively reflect the influence of shear-span ratio,
concrete strength, vertical reinforcements, and axial tension on the
sliding strength of shear walls. From Table 3, it is evident that the
proposed sliding model has a COV and mean value for Vt/Vsl of 0.24 and
1.18, respectively. The COV is significantly smaller than those of the
existing sliding models, and the mean value is closest to 1. This suggests
that the proposed sliding model demonstrates the highest predictive
accuracy. The reason for this is that the proposed sliding model takes

into account the interaction between the axial stress and dowel resis-
tance of vertical rebars, correcting the overestimation of the rebar dowel
contribution seen in the EC8 sliding model.

4.3. Parametric analysis of shear models

To further evaluate the proposed shear model, a parametric analysis
was conducted, and the results were compared with numerical results
and the predictions of the ACI and JGJ models, as shown in Fig. 11. The
analysis was based on the parameter values of specimen SW2 tested by Ji
et al. [1], with each analysis group changing only one parameter value.
It should be noted that in the parametric analysis on the size effect,
besides changing the effective height of the wall cross-section dw, the
wall height, reinforcement area, and axial tensile force were also pro-
portionally adjusted to ensure consistent shear span-to-depth ratio a/dw,
reinforcement ratios (ρb, ρh, and ρv), and concrete tensile ratio ηc across
different sizes of shear walls. The numerical models were subjected to
horizontal monotonic loading, and shear failure occurred in all cases
except for other failure modes indicated in the figure.
As shown in Fig. 11 (a), the lateral shear capacity of the numerical

model decreased by 50.3 % as the shear span-to-depth ratio a/dw in-
creases from 0.5 to 2.0. The predictions of the proposed shear model
closely match this decreasing trend, whereas the ACI and JGJ shear
models significantly underestimate it. The reason for this is that the ACI
model does not account for the effect of a/dw, and the JGJ model only
considers its impact when the ratio is greater than 1.5. In contrast, the

Fig. 11. Parameter Analysis of shear models: (a) shear span-to-depth ratio a/dw, (b) cylinder concrete compressive strength fc’, (c) concrete tensile ratio ηc, (d)
horizontal distributed reinforcement ratio ρh, (e) vertical distributed reinforcement ratio ρv, (f) boundary longitudinal reinforcement ratio ρb, (g) effective height dw.
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proposed shear model accounts for the variation of the strut angle θ with
a/dw across its entire range. The numerical model indicates that when a/
dw exceeds 2.0, the failure mode of the shear wall transitions from shear
failure to flexural failure. Therefore, predictions of the shear models for
a/dw greater than 2.0 are not evaluated.
Fig. 11 (b) shows the variation in shear capacity of the shear wall

with changes in the cylinder concrete compressive strength fc’. The
numerical results indicate that when fc’ increased from 20 MPa to
100 MPa, the shear capacity increases by 50.9 %. The proposed and JGJ
shear models predict increases in shear capacity of 44.8 % and 84.5 %,
respectively, while the ACI shear model’s prediction remains un-
changed. Comparatively, the increase predicted by the proposed model
is the closest to the numerical results. Due to the significant axial tensile
force, the coefficient αc in the ACI shear model decreases to zero,
resulting in no influence of concrete strength on its shear capacity pre-
diction. The JGJ shear model assumes that shear capacity is directly
proportional to the axial concrete tensile strength ft, but this still
significantly overestimates the contribution of concrete strength to shear
capacity compared to the numerical results. The proposed model not
only considers the decrease in the strut effective coefficient βs as the
concrete strength increases, which determines the effective compressive
strength βsfc’ of the diagonal strut, but also takes into account the
decrease in the strut width as the concrete strength increases (under the
premise of constant vertical reinforcement area).
Fig. 11 (c) shows that the shear capacity of the numerical model

significantly decreases with the increase in the concrete tensile ratio ηc
(representing the axial tensile force), and the failure mode transitions
from shear failure to sliding failure. Therefore, the figure includes the
predicted results of both the proposed shear and sliding models, with
their intersection occurring at approximately ηc= 0.62. When ηc> 0.62,
the predicted capacity of the proposed sliding model is lower than that
of the shear model, indicating that the shear wall undergoes sliding
failure. Conversely, when ηc< 0.62, the predicted capacity of the pro-
posed shear model is lower than that of the sliding model, indicating the
shear failure. The failure mode predicted by the proposed models aligns
with the numerical results, as shown in Fig. 11 (c). It is important to note
that when ηc is between 0.4 and 1.0, the difference in capacity pre-
dictions between the proposed shear and sliding models is not sub-
stantial, making it challenging to accurately determine the failure mode
solely based on the relative predicted capacities. The failure mode may

also vary due to the randomness of material mechanical properties,
crack development, and loading history.
As shown in Fig. 11 (d), the shear capacity of the proposed, JGJ, and

ACI shear models all increase with the horizontal distributed rein-
forcement ratio ρh. The ACI model shows the largest increase in shear
capacity, followed by the JGJ model, while the proposed model shows
the smallest increase but is the closest to the numerical predictions.
Specifically, when ρh is small (less than 0.4 %), both the ACI and JGJ
models significantly underestimate the shear capacity predicted by the
numerical model. When ρh is greater than 0.8 %, the shear capacity of
the numerical model no longer increases because the failure mode of the
shear wall has transitioned to flexural failure. On the other hand, the
influence of the vertical distributed reinforcement ratio ρv on the shear
capacity of shear walls is relatively minor, as shown in Fig. 11 (e). When
ρv increased from 0 to 1.0 %, the shear capacity of the numerical model
increases by 9.4 %, while the proposed model shows an increase of
7.0 %. However, the ACI and JGJ models completely ignored the effect
of ρv. It is worth noting that the comparison also indicates that ignoring
the influence of ρv on the shear capacity of RC shear walls under tension-
shear is reasonable for simplification.
The numerical results in Fig. 11 (f) indicate that an increase in the

boundary longitudinal reinforcement ratio ρb can significantly enhance
the shear capacity of shear walls. The proposed shear model, which
considers the effect of boundary longitudinal reinforcement on the di-
agonal strut width, accurately reflects the influence of ρb on shear ca-
pacity. In contrast, the ACI and JGJ models do not account for the
impact of boundary longitudinal reinforcement.
Fig. 11 (g) shows the effect of size on the shear strength of the shear

walls under tension-shear. The numerical model indicates that as the
effective height dw increases (from 455 mm to 3636 mm), its nominal
shear stress decreases by 47.4 %. The proposed shear model accounts for
the size effect through the effective strut coefficient βs, although it
slightly underestimates the reduction in shear strength compared to the
numerical model. The ACI and JGJ models do not consider the size
effect.

4.4. Parametric analysis of sliding models

The parametric analysis of the sliding model was conducted based on
the parameter values of the specimen SW4 tested by Ji et al. [1], with

Fig. 12. Parameter Analysis of sliding models: (a) cylinder concrete compressive strength fc’, (c) concrete tensile ratio ηc, (e) vertical distributed reinforcement ratio
ρv, (f) boundary longitudinal reinforcement ratio ρb.
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each analysis group changing only one parameter value. The predicted
results of the proposed, ACI and EC8 slidingmodels are shown in Fig. 12,
as well as the numerical results. Since the sliding failure surface is a
horizontal cross-section, the effects of the shear span-to-depth ratio and
horizontal distributed reinforcement on sliding capacity can be ignored.
Additionally, neither the existing nor the proposed sliding models
consider the size effect, so sensitivity analysis for these three parameters
was not conducted. The numerical models were subjected to monotonic
loading, and sliding failure occurred in all cases except where other
failure modes noted in the figure.
Fig. 12 (a) shows the effect of cylinder concrete compressive strength

fc’ on sliding capacity. As fc’ increases, the sliding capacity of the nu-
merical model exhibits a certain degree of increase. In contrast, the

sliding capacities of the proposed and ACI sliding models remain almost
unchanged with varying concrete strength, with the proposed model’s
predictions being the closest to the numerical results. Conversely, the
sliding capacity predicted by the EC8 sliding model shows a decreasing
trend and significantly overestimates the numerical results.
Fig. 12 (b) compares the changes in sliding capacity with the increase

in concrete tensile ratio ηc. It can be seen that the proposed sliding model
aligns best with the numerical results. The transition of failure modes
with ηc has been discussed in detail in Section 4.3, so it will not be
elaborated here.
As shown in Fig. 12 (c), as the vertical distributed reinforcement

ratio ρv increases from zero to 1.0 %, the sliding capacity of the nu-
merical model increases by 73.5 %. The sliding capacities of the pro-
posed, ACI, and EC8 models increase by 61.3 %, 213.5 %, and 42.5 %,
respectively. Therefore, the proposed model better reflects the influence
of ρv on the sliding capacity of RC shear walls under tension-shear.
Fig. 12 (d) shows that as the boundary longitudinal reinforcement

ratio ρb increases, the lateral capacity of the shear wall significantly
improves in the numerical model, accompanied by a transition in failure
mode from sliding failure to shear failure. The figure provides the pre-
dicted lateral capacities of the proposed sliding and shear models, which
are equal at approximately ρb= 1.7 %. When ρb< 1.7 %, the predicted
lateral capacity of the proposed sliding model is lower than that of the
proposed shear model, indicating that the shear wall is controlled by
sliding failure. Conversely, when ρb> 1.7 %, the shear wall is controlled
by shear failure. This is consistent with the transition in failure modes
shown by the numerical model with increasing ρb.

Fig. 13. Cross-sections of shear walls with flanges: (a) SW2–3 W; (b) SW2–5 W.

Fig. 14. Numerical results of shear walls with flanges: (a) skeleton curves of shear load V versus lateral displacement; crack distribution and width for (b) SW2–3 W
and (c) SW2–5 W at peak shear loads.

Fig. 15. Influence of flange width on tension-shear strength of shear walls.

Y.-B. Ding et al.
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5. Effect of boundary flanges on shear strength

In the existing tension-shear tests for RC shear walls, only specimens
with a rectangular section have been tested. However, RC shear walls
are typically reinforced with boundary flanges, which can significantly
enhance the shear strength. To investigate the influence of boundary
flanges on the tension-shear capacity of shear walls, this study con-
ducted a numerical analysis using nonlinear FE methods on H-shaped
shear walls with flanges. Considering that the flange may increase the
difference between cyclic and monotonic responses of RC shear walls,
the FE models for non-rectangular shear walls were subjected to cyclic
loading.
Based on the rectangular shear wall specimen SW2 tested by Ji et al.

[1], two H-shaped shear wall specimens with different flange widths
were designed, as illustrated in Fig. 13. The longitudinal reinforcement
ratio of their boundary flanges was kept consistent with that of the
boundary columns in specimen SW2. The material and geometric pa-
rameters, as well as the target axial force, were also maintained in
accordance with those of WS2. Using the validated FE methods
described in Section 2.2, numerical simulations were conducted for the
H-shaped shear walls, and the results are presented in Fig. 14. It can be
observed that both specimens experience shear failure, and increasing
the flange width significantly enhances the shear capacity and stiffness.
Fig. 15 presents the experimental and numerical shear strength for

SW2, SW2–3 W, and SW2–5 W, along with the predictions from the JGJ,
ACI, and the proposed shear models. It can be observed that the upward
trend in shear strength predicted by the proposed model closely aligns
with the FE results. In contrast, the predictions of the JGJ and ACI shear
models significantly underestimate the contribution of the flange to the
shear strength of the shear walls. This is attributed to the fact that the
proposed shear model directly considers the contribution of the com-
pressed flange to the diagonal strut capacity. However, the JGJ and ACI
shear models only account for the reduction in nominal axial tensile
stress caused by the flange without directly considering its contribution
to the shear strength of shear walls.
According to existing research [56–58], the shear lag effect has a

significant impact on the flexural strength and stiffness of flanged RC
shear walls. The proposed shear model is effectively validated by the
numerical results within the range where the ratio of flange width to
web thickness bf/bw is less than 5, under the condition that the FE model
can inherently consider the shear lag effect. This indicates that it is
feasible for the proposed shear model to ignore the shear lag effect
within the range of bf/bw ≤ 5.0. However, for larger flange widths, the
shear lag effect may have a significant impact on the shear strength of
flanged RC shear walls, which requires further research.

6. Summary and conclusions

(1) This paper established a test database comprising 41 RC shear
walls subjected to combined axial tension and lateral shear. The
collected tests were categorized based on failure modes, serving
as the foundation for evaluating shear and sliding models for RC
shear walls.

(2) Based on the mechanics-based cracking strut-and-tie model, a
simplified shear model applicable to RC shear walls under
tension-shear was proposed. This model considers the influence
of horizontal reinforcement, concrete strength, and size effects on
shear strength through the effective strut coefficient. It also in-
corporates the effects of axial tensile load and vertical rein-
forcement through the strut width and accounts for the influence
of flange width through the equivalent strut thickness.

(3) Evaluation of the shear models based on the collected database
revealed that the selected existing shear models exhibited sig-
nificant variability in predicting the shear strength, with co-
efficients of variation between 0.43 and 0.61 for the ratios of the
tested-to-predicted shear strength. In contrast, the proposed

shear model demonstrated a much lower coefficient of variation
of 0.18.

(4) Evaluation of the sliding models based on the collected database
indicated that the existing sliding models were not effective in
predicting the sliding resistance of shear walls under tension-
shear. A modified sliding model was proposed based on the
sliding model in Eurocode 8, considering the weakening effect of
axial stress on the dowel resistance of vertical reinforcement. The
proposed sliding model was validated to better predict the sliding
strength of RC shear walls.

(5) A parametric analysis was conducted on the proposed models and
the code models, and finite element results were used for verifi-
cation. The results indicated that the proposed models not only
effectively captured the influence of shear span-to-depth ratio,
concrete strength, reinforcement ratios, and axial tensile force on
the shear and sliding capacities of RC shear walls, but also well
reflected the transition of shear and sliding failure modes.

(6) Numerical analysis demonstrated that increasing the flange
width significantly enhances the shear strength and stiffness of
shear walls. The proposed shear model was validated to effec-
tively capture the increased shear capacity due to the widening of
the flange width in shear walls under tension-shear. However, the
shear models provided by ACI 318-19 and JGJ 3-2010 notably
underestimated this effect.
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