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Abstract: Conventional methods to identify influence lines, which are essential in design and evaluation of bridges, use contact sensors
involving high upfront and operational costs. This paper presents an approach to identifying influence lines based on computer vision mea-
surements. The approach integrates vision-based identification of vehicle types, estimation of vehicle loads, bridge displacement measure-
ment, and Bayesian parametric estimation. A you only look once version 4 (YOLOv4)—a real-time object detector—with a convolutional
block attention module is trained to identify vehicle types and estimate vehicle loads. Bridge displacement measurements provide dynamic
deflections, which are then used to analyze the influence line through Bayesian parametric estimation. The performance of this approach was
evaluated through laboratory and field experiments with different types of vehicles and driving speeds. The results show that the errors were
up to 4.88% for laboratory experiments and up to 11.48% for field experiments. This research provides findings that will help with the prac-
tices of condition monitoring and assessment of highway bridges. DOI: 10.1061/JBENF2.BEENG-6235. © 2023 American Society of Civil
Engineers.
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Introduction

Although condition monitoring and assessment of short- and
medium-span bridges plays a critical role in the resilience of the in-
frastructure network (Kromanis and Kripakaran 2017; Xia et al.
2019), few such bridges are instrumented with health monitoring
systems and there is a lack of data that can be used to assess
their conditions (Fang et al. 2022). Since the installation of moni-
toring systems often requires traffic closures that interrupt the trans-
port network (Zheng et al. 2022), there is a need for effective and
efficient approaches to bridge condition monitoring that do not af-
fect the operation of the bridge.

Various methods have been developed for the systematic iden-
tification and evaluation of bridge structures. However, many ig-
nore the contribution of traffic load to the structural damping,
and the mechanical parameters of the vehicles need to be known
in advance for some methods (Dan et al. 2022). Advanced

approaches that modify sparse component analysis by time-
frequency have been developed to improve the accuracy and effi-
ciency of system identification (Yao et al. 2018), as well as optimi-
zation of sensor placement solutions using a parallel optimization
framework based on a competent genetic algorithm or by using a
hypotrochoid spiral optimization algorithm (Wu et al. 2019; Mah-
joubi et al. 2020), but they are still affected by the location of sen-
sors and ambient randomness. Other types of sensors have been
utilized for structural condition monitoring and assessment of brid-
ges, such as: direct measurements by displacement sensors to as-
sess bridge condition, which involves high price, high cost of
manpower and material resources, and is sensitive to environmental
factors (Cho et al. 2018); the use of strain gauges and inclinometers
to evaluate bridge girder deflections based on polynomial functions
(Sousa et al. 2013); the application of distributed fiber optic sensors
to bridge strain and deflection profile measurements to provide re-
liable structural health monitoring of the bridge (Siwowski et al.
2021), but the experimental process of the last two methods re-
quires closed traffic for a long period of time; the use of distributed
optical fiber sensors for stiffness monitoring and damage identifica-
tion of highway bridges under moving vehicle loads (Wu et al.
2017); and the use of long-gauge fiber Bragg grating strain sensors
for reference-free damage identification of highway continuous
girder bridges (Zhang et al. 2022); however, the practicability of
these last two methods requires verification by a real bridge test.

Alternatively, to make bridge structure evaluations cheaper,
more convenient, and faster, influence line (IL) testing and extrac-
tion can be used. The bridge IL can reflect the displacement, stress,
shear, bending moment, and other effects on the structure at a given
position due to the imposition of a unit moving load at any position
(Belegundu 1988). Therefore, it serves as a significant performance
index for condition assessment of bridge structures and has been
widely applied to the fields of health monitoring of bridges
(Zheng et al. 2019a), such as damage identification (Alamdari
et al. 2019; Yang et al. 2022; Zeinali and Story 2018), finite-
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element model updating (Liao et al. 2012; Strauss et al. 2012; Xiao
et al. 2015), and bridge weigh-in-motion (BWIM) (Zhao et al.
2015; Ojio et al. 2016; OBrien et al. 2018). The difference in de-
flection of the IL under a symmetrical load was used for damage
detection, which is suitable for multidamage and only one deflec-
tion sensor is needed in theory (Liu et al. 2012). Chen et al.
(2015) proposed a new damage localization technique for a long
suspension bridge based on stress ILs, which relies on the
weigh-in-motion system. The curvature of noisy static deformation
of ILs was used to predict the location and damage severity of the
structure, although a significant number of load placement loca-
tions might be required (Zeinali and Story 2018). The rotation
IL, which relies on rotation measurements obtained from the bridge
bearing locations, was used for condition assessment, although the
many strain gauge sensors required make it not economically effi-
cient (Alamdari et al. 2019). Ren et al. (2011) proposed a response
surface methodology-based model using uniform design and struc-
tural static responses, and Xiao et al. (2015) proposed a new model
updating method that uses both modal frequencies and multiscale
(displacement and stress) static ILs as updating objectives. These
two methods have the advantages of easy implementation, high
cost-efficiency, and adequate updating accuracy, but they require
the bridge closed to traffic and truck weighing in advance. Another
important application of the IL is BWIM, which can effectively
predict static axle and gross weights (Moses 1979). The IL was
taken as a reference in a BWIM system, based on which the axle
load effects on bridges (OBrien and Enright 2013) and weights
of heavy vehicles (Zhao et al. 2015) were obtained. Deng and
Cai (2010) proposed a method for identifying dynamic vehicular
axle loads using the superposition principle and influence surface
concept. Furthermore, as an alternative approach to conventional
BWIM, probabilistic BWIM was proposed to infer axle weights
using a probabilistic IL (OBrien et al. 2018). However, the above
IL-based BWIM methods have the disadvantages of high price,
high cost of manpower and material resources, and being affected
by measurement noise.

An IL can be identified in the time domain or the frequency do-
main. Representative time-domain approaches include, but are not
limited to, the matrix method (OBrien et al. 2006), a fitting method
based on piecewise polynomial from bridge dynamic response in-
duced by a passing vehicle (Wang et al. 2017), maximum likeli-
hood estimator method by inversing the established calibration
vehicle information matrix (Ieng 2015), adaptive B-spline basis
dictionary method and the regularized least squares QR decompo-
sition method, which introduced the regularization method into the
matrix method to avoid unreasonable fluctuation in the identified
influence lines (Chen et al. 2019; Zheng et al. 2019b), and the dy-
namic fluctuation part elimination method based on empirical mode
decomposition (Zheng et al. 2020). The frequency-domain method
makes full use of the fact that the Fourier transform of the response
of a structure is equal to the point-wise multiplication of the load
and the IL in the frequency domain. Frøseth et al. (2017) used
the fast Fourier transform (FFT) algorithm to obtain a static IL
from measurements and proposed regularization filters in the fre-
quency domain to extract ILs efficiently, while Yan and Yuen
(2020) proposed a frequency-domain approach for extracting the
IL of a beam-like structure without information on moving loads.
The time-domain method is suitable for the problem of IL identifi-
cation with limited noise, while the frequency-domain method pro-
vides an efficient process to identify ILs, but its accuracy is affected
by the spectrum leakage problem. Compared to the conventional
matrix method in the time domain, the frequency-domain approach
effectively reduces the computational complexity of IL identifica-
tion. Current research mainly employs contact sensors to collect

bridge response data for time-domain or frequency-domain analy-
sis. However, there are still many problems, such as the high cost of
test equipment, insensitivity to local diseases, being easily affected
by environmental changes, and reliance on a BWIM system to ob-
tain axle load information. Installation and operation of sensors in-
volve significant upfront and long-term costs related to time and
labor. Most short- and medium-span bridges are not instrumented
with these sensors (e.g., displacement sensors, strain gauges, and
a BWIM system). With the rapid development of artificial intelli-
gence, machine vision and big data have been gradually integrated
with bridge health monitoring technology. Based on the traffic flow
video, the speed (Zhang et al. 2019), weights (Zhou et al. 2021a;
Dan et al. 2019), real-time position (Chen et al. 2016), type of ve-
hicle (Zhou et al. 2020; Hou et al. 2019; Zhu et al. 2022), and dy-
namic response information of the bridge structure can be obtained
by machine vision and machine learning (Han et al. 2022), which
can effectively overcome cost disadvantages. Zhou et al. (2021b)
proposed a noncontact technology to identify the IL by construct-
ing the axle weight matrix through interval bounded axle weight
values and combining affine arithmetic and support vector ma-
chines. However, this method relies on the accuracy of the axle
weight value interval, and its application is limited to numerical
simulations and laboratory scale tests. Dong et al. (2019) proposed
a completely noncontact structural identification system for identi-
fying the IL, which is based on machine vision technology that
avoids having to calibrate vehicle axle load. The machine vision
method in the context of bridge health monitoring has the charac-
teristics of being a noncontact method, requiring no closure of traf-
fic, and can effectively reduce physical risk. Furthermore, the
solution to identifying the IL is a typical inverse problem. Least
squares method and regularization method were employed to
deal with ill-posedness of inverse problems and produced a reason-
able estimate (Rowley et al. 2009). However, the solution to an in-
verse problem is not a single estimate but a probability distribution.
Another approach is statistical inversion based on Bayesian statis-
tics, which reformulates inverse problems as problems of statistical
inference. In the statistical method, variables are modeled with an
informative or noninformative prior, with the informative prior
being a known distribution and the noninformative prior being a
random uniform distribution (Kaipio and Somersalo 2006). There-
fore, the distribution of the unknowns is generated in the statistical
inversion based on Bayesian statistics as the solution of the inverse
problem.

Yuen (2010) proposed a Bayesian probabilistic framework for
structural model updating using input–output measurements,
which overcomes the uncertainty caused by finite information of
the data. Beck (2010) utilized probability logic with Bayesian up-
dating to quantify modeling uncertainty and perform system iden-
tification, which was regarded as an inference to plausible system
models. A Bayesian fast Fourier transform approach (BFFTA)
was presented to obtain the optimal values of the updated modal pa-
rameters and their associated uncertainties (Yuen and Katafygiotis
2003). Au (2011) investigated the determination of the posterior
covariance matrix of modal parameters within the framework of
a BFFTA for modal identification using ambient vibration data.
Au and Ni (2014) developed a Bayesian approach that properly ac-
counted for uncertainty in accordance with probability logic for
modal identification. Zhang et al. (2015) investigated the posterior
uncertainty of modal parameters in terms of their covariance ma-
trix, which was verified by laboratory data. Sun et al. (2015) pre-
sented a Bayesian time-domain method to identify structural
parameters and unknown input loads using incomplete output mea-
surement only (acceleration and dynamic strain). Argyris et al.
(2020) proposed modal-based Bayesian model-updating
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methodology regarding inclusion of the mode shapes. The relation-
ship between dynamic response and IL was embedded in Bayesian
inference framework by Yan and Yuen (2020), which has the ad-
vantage of avoiding the ill-posedness nature of inverse problems.
However, the achievement of this method relied on the reference
IL, of which the application was limited to numerical studies. A re-
view of relevant literature reveals that Bayesian statistics has been
widely applied in model updating and parameters estimation.

In Bayesian statistics, the randomness of parameters describes
the uncertainty of information, and the external data are utilized
for parameter updating. Furthermore, it can overcome pathological
solution and the ill-posedness nature of inverse problems. How-
ever, few scholars have applied statistical inference to solve the
posterior distribution of IL, which is in the category of structural
parameters. In addition to this, most of the time and frequency do-
main methods for identifying influence lines require known accu-
rate bridge response (outputs) and vehicle information (inputs, e.g.,
axle distance and axle weight) (Zheng et al. 2019a). However,
Bayesian theory can solve IL identification in the absence of a
BWIM system (only partial vehicle information is known) by stat-
istical inference. To propose an automatically identifying IL
method for highway bridges using Bayesian parametric estimation
based on computer vision, this study first establishes a machine
vision-based vehicle target identification and classification method,
then combines the established vehicle data and information data-
base to obtain partial vehicle parameter information (virtual axle
weight matrix), and finally proposes an IL identification method
based on Bayes’ theorem. The method has the advantages of not
relying on a BWIM system (without the need to obtain accurate ve-
hicle axle load intervals and axle spacing), and only requires the
response of the bridge measurement location, combined with the
vehicle parameter information obtained from the video identifica-
tion to obtain the displacement IL. Furthermore, the method does
not require interruption of normal traffic flow.

Motivated by the existing development of machine vision and
Bayesian statistics, this paper proposes an approach to identify IL
of bridges based on computer vision measurements and machine
learning. Compared with existing research, the novelty of this

research is that the proposed approach integrates identification of
vehicle types, estimation of vehicle loads, bridge vibration mea-
surement, and Bayesian parametric estimation. Based on machine
vision technology, a YOLOv4 with convolutional block attention
module (CBAM) is developed to identify vehicle types, followed
by estimation of vehicle information. Furthermore, bridge vibration
measurement provides dynamic deflections by computer vision
measurements, which are then utilized to analyze the IL of bridges
through Bayesian parametric estimation. This process does not rely
on a BWIM system and does not require closing the bridge to traf-
fic. The performance of the proposed approach was evaluated
through numerical simulations, laboratory tests, and field experi-
ments with several conditions, different types of vehicles, and driv-
ing speeds. Additionally, the proposed method is compared with
the IL identification algorithm based on interval analysis with affine
arithmetic (AAIL) proposed by the authors in previous research
(Zhou et al. 2021b) in the field tests section to further demonstrate
the efficiency of the proposed method presented in this paper. The
findings from this research will help with practices in condition
monitoring and assessment of highway bridges.

The remainder of the paper is organized as follows: Section
“Methods” elaborates the proposed methods. Sections “Numerical
simulations,” “Laboratory Tests,” and “Field Tests” introduce the
numerical simulations, laboratory tests, and field tests, respectively.
And the Section “Conclusions” summarizes the conclusions and
provides suggestions for future related research.

Methods

Overview

Fig. 1 shows the framework of the proposed approach with four in-
terconnected modules, which are utilized to identify vehicle types
(Module 1), estimate vehicle loads (Module 2), measure bridge dis-
placement responses (Module 3), and estimate IL (Module 4).
Module 1 [“Identification of Vehicle Types (Module 1)” section]
identifies vehicle types using a YOLOv4 with CBAM, which is

Fig. 1. Framework of the IL identification system.
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trained using photos of various types of vehicles such as two-axle
and three-axle vehicles. Module 2 [“Estimation of Vehicle Loads
(Module 2)” section] estimates the weight and axle spacing of ve-
hicles, which are already identified by Module 1, based on statisti-
cal data collected from prior research (Zhou et al. 2020). Module 3
[“Measurement of Bridge Displacements (Module 3)” section]
measures the displacement responses of bridges based on a com-
puter vision approach. Module 4 [“Identification of Influence
Lines (Module 4)” section] estimates the IL based on the vehicle
loads estimated in Module 2 and the bridge vibrations measured
in Module 3, using the Efficient No-U-Turn Sampler (E-NUTS)
based on Bayesian theory (Hoffman and Gelman 2014). The four
modules are elaborated on in the following subsections. Addition-
ally, the numerical simulations and laboratory tests on vehicle–
bridge coupling vibration first verified that Module 4 can
effectively identify the IL of the bridge structure based on the re-
sponse of multiple load cases and the corresponding virtual axle
weights. Furthermore, the field experiments verified the effective-
ness of the overall framework of the proposed approach for differ-
ent driving speeds and different vehicle types.

Identification of Vehicle Types (Module 1)

Identification of vehicle types is performed using a YOLOv4 with
CBAM, as shown in Fig. 2. YOLOv4 was selected due to its high
efficiency and accuracy shown in previous studies (Tang et al.
2020; Chen et al. 2022). The YOLOv4 includes four primary
parts: CSPDarknet53, Spatial Pyramid Pooling, Path Aggregation
Network, and Yolo Head (Bochkovskiy et al. 2020). The CSP mod-
ule in CSPDarkNet53 can improve the learning ability of the con-
volutional network and ensure the detection accuracy while
reducing the computational effort. YOLOv4 uses the MISH activa-
tion function as the activation function in CSPDarkNet53, and the
rest still use the LeakyReLU function. Meanwhile, YOLOv4 uses
spatial pyramid pooling and path aggregation network (PANet),
allowing the algorithm to adapt to images of different resolutions
and enhance the instance segmentation process by preserving
spatial information. Finally, to improve the speed and accuracy
of identification, YOLOv4 uses three different scale feature maps
of 19 × 19, 38 × 38, and 76 × 76 to predict the detection results.

CBAMs are added to increase the weight of the region of inter-
est (ROI), which is the region with vehicles, while suppressing the
weights of regions without vehicles. The use of CBAM is expected

Fig. 2. YOLOv4-CBAM network.
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to increase the efficiency and accuracy of identification of vehicle
types. The CBAM is composed of a channel attention mechanism
and a spatial attention mechanism (Woo et al. 2018). The channel
attention mechanism generates masks and evaluation scores, which
are utilized to achieve the weighted processing of input images, as
shown in Eqs. (1) and (2):

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F))) (1)

F ′ =Mc(F)⊗ F (2)

The spatial attention mechanism improves the efficiency and ac-
curacy by inputting weight coefficients and obtaining the product
of weight coefficients and the information, as shown in Eqs. (3)
and (4):

Ms(F
′) = σ(f 7×7([AvgPool(F ′); MaxPool(F ′)])) (3)

F ′′ =Ms(F
′)⊗ F ′ (4)

where F = input feature map; Mc(F ) = channel attention map out-
put by the channel attention module; F′ = output feature map of
the channel attention module; MLP =multilayer perceptron;Ms(F′)
= spatial attention map output by the spatial attention module; F′′ =
feature map output by the CBAM; AvgPool and MaxPool =
channel-based global average pooling and global maximum
pooling, respectively; σ = sigmoid function; f7×7 = convolution op-
eration with the filter size of 7 × 7; and ⊗ = element-wise
multiplication.

Mosaic data augmentation is used to augment the training data.
Four images are randomly selected from the original database,
modified by a series of operations (e.g., clipping and zooming),
and combined into one image. The data augmentation is expected
to improve the robustness of the trained YOLOv4 model. Batch
normalization is used to calculate activation statistics from four dif-
ferent images on each layer, which eliminates the necessity of using
a large mini-batch size (Bochkovskiy et al. 2020).

Based on the team’s previous research (Zhou et al. 2020), a de-
tailed reclassification of two-axle and three-axle trucks was
performed. Further, rough-grained classification criteria were pro-
posed to classify common vehicles into 10 types, which are
sedan car, mini bus, light truck, large truck, coach truck, two-axle
truck with 4 wheels (2A–4W truck), two-axle truck with 6 wheels
(2A–6W truck), three-axle truck with 8 wheels (3A–8W truck),
three-axle truck with 10 wheels (3A–10W truck), and four-axle
truck with 12 wheels (4A–12W truck), as shown in Fig. 3.

To evaluate the influence of illumination conditions and vehicle
speeds on the detection accuracy, images were collected during the
day and at night. More than 1,000 images were collected for each
type of vehicle to form a data set, which was split into training and
testing sets with a ratio of 8:2 to ensure the identification accuracy
of the model and to have enough data sets to test the trained model
(Wang et al. 2021; Zhou et al. 2020; Cheng et al. 2022). The con-
vergence curves of the training process for YOLOv4 and YOLOv4
with CBAM are plotted in Fig. 4. The bottom and top lines repre-
sent the training loss and AAP result, respectively. The identifica-
tion accuracy of the improved YOLOv4 with CBAM is slightly
improved, and the fluctuation of AAP during model training is sig-
nificantly reduced. YOLOv4 with CBAM (0.018 s) has less pro-
cessing time for a single image compared to YOLOv4 (0.047 s).
With the testing set, the identification accuracies of YOLOv4
with CBAM for images collected by unmanned aerial vehicle
(UAV) during the day and at night were more than 98% and
96%, respectively, indicating that the trained YOLOv4 with
CBAM has high accuracy. The definition of AAP is given in

Eq. (5), which is a performance metric used to evaluate the accu-
racy of the trained YOLOv4 model:

AAP =

∑G
i=1

�1
0P(R)dR

G
(5)

where AAP = average accuracy of all categories, which can mea-
sure the performance of the model in all categories; and G = num-
ber of detected categories. AP is usually used as a criterion to
evaluate the performance of an object detection model. It represents
the accuracy of the model in a certain category, and is the area en-
closed by the precision–recall (P-R) curve (with recall as x-axis and
precision as y-axis). The calculation formulas for precision rate and
recall are as follows (Fu et al. 2021):

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

where TP = number of positive samples correctly predicted; FP =
number of negative samples incorrectly predicted; and FN = num-
ber of positive samples incorrectly predicted.

Estimation of Vehicle Loads (Module 2)

A data set containing 5,123 records was established by collecting
parameters from websites for the classified trucks after reclassifica-
tion of two-axle and three-axle trucks. Among them, each message
includes axle spacing, axle load distribution coefficient, curb
weight (minimum value of the sum of all axle loads of the vehicle),
and maximum permissible total weight (maximum value of the sum
of all axle loads of the vehicle) of the truck, as shown in Fig. 5
and Table 1. Based on the vehicle types identified and classified
by the model, the mapping relationship between the vehicle types
and their corresponding vehicle parameter information is obtained
in combination with the vehicle data and information base
established.

Fig. 3. Illustration of the considered types of vehicles.
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Measurement of Bridge Displacements (Module 3)

The video displacement system (VDS) developed by Yan et al.
(2021) includes a video acquisition device, a lighting device, and
a video image processing system. The VDS has been used for
dynamic displacement measurements due to its long-distance mul-
tipoint noncontact test, simple equipment, easy implementation,
and higher testing accuracy (Liu et al. 2022; Yan et al. 2021). In
this study, the video displacement system was used to measure
the midspan displacement responses of bridges in field tests
based on the digital image correlation technique that combines
the Fourier transform-based cross correlation (FTCC) integer-
pixel registration algorithm and the inverse compositional Gauss–
Newton (IC-GN) subpixel registration algorithm (Reddy and
Chatterji 1996; Pan et al. 2013).

Since the accuracy of VDS deformation measurement is posi-
tively correlated with the length that can be represented by a
pixel point in a video image, subpixel means that the pixel is sub-
divided so that the subpixel can represent a smaller length. There-
fore, to achieve relatively higher accuracies in displacement
time-history measurements, it is necessary to provide acceptable
subpixel resolution accuracy in the displacement time-history do-
main. First, a vision sensor system composed of a high-speed
video camera and computer processing system is employed to cap-
ture the image sequences including the selected ROI with an exist-
ing surface feature. Second, the integer-pixel image registration
algorithm FTCC uses the overlap region between the referenced
subset t(x, y) and the current subset g(x, y) to be matched to invert
the mutual power spectrum in its frequency domain to obtain the
impulse function. Third, by detecting the peak position of the func-
tion, the detection of the two-dimensional displacement of the
image in the null domain is achieved. From this, an accurate initial
guess for the deformed images is achieved based on the iterative
initial values provided by the integer-pixel registration algorithm
FTCC. Further, a novel subpixel registration algorithm IC-GN
with a higher registration accuracy and efficiency is used to con-
verge this integer-pixel initial value to a local optimal solution at
the subpixel level to track the selected ROI with existing surface

features from the image sequence, thereby achieving deformation
measurement at the subpixel level (Yan et al. 2021).

Identification of Influence Lines (Module 4)

Mathematical Model of IL
When a calibration vehicle with known axle weight Wi and known
axle distance Di passes over a bridge, it results in a series of mea-
surements of the load effect yTk (Zheng et al. 2019b). Assuming lin-
earity (Zheng et al. 2022), the response generated by multiple
external excitations caused by the vehicle are a summation of the
effect of each individual excitation of each individual axis of the
vehicle (Zaurin and Catbas 2010a, b). Hence, for each sampling
point k, the vehicle-induced responses yTk can be expressed through
the axle weightWi and the influence coefficient of the bridge I(k−Ci)

corresponding to the ith axle (OBrien et al. 2006; Zheng et al.
2019b):

yTk =
∑Q
i=1

WiI(k−Ci) (8)

Ci =
Dif

v
(9)

(a) (b)

Fig. 4. Training results: (a) YOLOv4; and (b) YOLOv4-CBAM.

Fig. 5. Vehicle parameters of the 3A–8W truck.
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where Q = number of vehicles axles; Ci = sampling point
difference between the first axle and the ith axle; Di = axle spacing;
f = sampling frequency; and v = vehicle velocity. Fig. 6 illustrates
the decomposition process of the unit IL.

Eq. (8) can be rewritten in a matrix form as follows (Zheng et al.
2022):

{Y}K ,1 = [W ]K ,K−CQ
{I}K−CQ ,1 (10)

or

yT1
yT2

..

.

yTK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

K×1

=

W1 0 · · · 0

0 W1
..
.

..

.
0 . .

.
0

W2
..
.

W1

0 W2 0

..

.
0 . .

. ..
.

WQ
..
.

W2

0 WQ 0

..

. ..
. . .

. ..
.

0 0 · · · WQ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K×(K−CQ)

×

I1
I2

..

.

IK−CQ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

K−CQ×1

(11)

where {Y}K,1 = responses vector collected at each time step;
[W ]K ,K−CQ

= axle load matrix containing the vehicle information
of axle load and axle number; and {I}K−CQ ,1 = vector consisting
of the bridge IL ordinate.

In addition, K is the sampling number of measurements, which
can be expressed as follows:

K =
(L + DQ)f

v
(12)

where L = length of the bridge; and DQ = distance from Axle-1 to
Axle-Q.

The aforementioned method is established with the acknowl-
edgment of known input and output. The dynamic responses (out-
put information) of the bridge under moving vehicles should be
accurately measured. In addition, it is necessary to preweigh the
calibrated vehicle to obtain the vehicle load information (i.e.,
type, axle load, motion speed, and axle spacing) and thereby deter-
mine the corresponding elements of the matrix [W ] (input informa-
tion). This method is not suitable for the structural health
monitoring of small- and medium-span bridges without a BWIM
system. However, Bayesian theory can achieve the identification
of bridge ILs (unknown parameters) in the absence of a BWIM sys-
tem by combining the dynamic response of the bridge under

moving vehicles with partial load information of the corresponding
vehicle (virtual axle load matrix).

Bayesian Inference
This study uses Bayesian inference to estimate unknown parame-
ters, which are θ1, θ2, …, θn. The posterior distribution is given
by (Yuen 2010)

p(θ|ψ) = p(ψ |θ)p(θ)�
Θ p(ψ |θ)p(θ)dθ (13)

where θ = parameter to identify; p(θ|ψ) = posterior distribution of
the parameters; ψ = observed data; p(θ) = prior distribution of pa-
rameters; and p(ψ|θ) = the likelihood function:

p(ψ |θ) = L(θ|ψ1, ψ2, . . . , ψn) =
∏n
i=1

p(ψ i|θ) (14)

where p(ψi|θ) = probability density function (PDF); ψi = value of
the ith observation; and n = number of observations.

In Bayesian statistics, the prior distribution represents known
knowledge of unknown parameters (e.g., IL ordinate). The prior
distribution includes informative and noninformative prior

Table 1. Distribution interval of vehicle parameters

Vehicle type

Axle spacing (mm)

Overall weight (kg)
(min., max.)

Axle load distribution coefficient

Front-axle spacing
(min., max.)

Rear-axle spacing
(min., max.)

Axle 1
(min., max.) Axle 2 (min., max.)

Axle 3
(min., max.)

2A–4W truck (2,000, 3,450) — (700, 3,470) (0.28, 0.53) (0.47, 0.72) —
2A–6W truck (2,300, 5,800) — (1,400, 18,000) (0.25, 0.51) (0.49, 0.75) —
3A–8W truck (1,700, 2,000) (2,500, 6,000) (6,700, 25,500) (0.19, 0.30) (0.19, 0.30) (0.40, 0.62)
3A–10W truck (2,925, 5,950) (1,300, 1,450) (7,460, 25,450) (0.24, 0.50) (0.25, 0.38) (0.25, 0.38)

Note: Overall weight is the sum of all axle loads of the vehicle, and the axle loads distribution coefficient is the ratio of axle loads to global weight of each axle.
The 2A–4W truck and 2A–6W truck indicate a two-axle truck total with 4 and 6 wheels, respectively. The 3A–8W truck and 3A–10W truck indicate a
three-axle truck total with 8 and 10 wheels, respectively.

Fig. 6. Unit IL decomposition.
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distributions. Informative prior distribution is established based on
prior knowledge, which is usually obtained from professional
knowledge and expert experience. When there is limited prior
knowledge about the unknown parameters, a noninformative
prior distribution can be adopted. In this study, the noninformative
prior distribution is used because the information of the IL param-
eters is unknown. A uniform distribution or a normal distribution
with a large variance can be chosen as the noninformative prior dis-
tribution. The noninformative prior distribution contains little in-
formation and does not influence the posterior distribution. In
this case, the statistical inference will rely solely on the likelihood
of the data (Yuen 2010; Ojo et al. 2017; Wesner and Pomeranz
2021).

Bayesian Parametric Estimation
This section proposes the general Bayesian framework for model
parameters updating, by input–output system measurement. A lin-
ear or nonlinear dynamical system considering the input–output re-
lationship can be written as follows (Yuen 2010; Zheng et al.
2020):

x(t) = φ(t, Fin, x(0), θm) (15)

where φ = relationship between model response output vector
x(t) ∈ RNd and input Fin at time t; x(0) = initial condition of the
model; and θm = model parameters.

Assume that response data are available at N0(≪Nd) observed
degrees of freedom (DOFs) and Δt denotes the sampling time
step, where N0 denotes the number of observed DOF and Nd repre-
sents the sum of the number of degrees of freedom in the dynamical
system x(t) (Yuen 2010). The prediction error ε is a combined ef-
fect of measurement noise and modeling error. Hence, the mea-
sured response yn ∈ RN0 (at time t= nΔt) will be different from
the model response L0x(nΔt) corresponding to each DOF. L0 is de-
fined as the transfer matrix representing the input–output relation-
ship of the system, which is an observed matrix of N0 ×Nd.

yn = L0x(nΔt) + εn (16)

where ɛ is modeled as a discrete zero-mean Gaussian white noise
vector (εn ∈ RN0 ), and it satisfies the following correlation
structure:

E[εnε
T
n′ ] =

∑
ε
δnn′ (17)

where E[·] = expectation; δnn′ = Kronecker delta function; and∑
ε = N0 ×N0 covariance matrix of the prediction error process.
To reduce computational complexity and ensure that the predic-

tion errors do not affect each other and are noninformative, assum-
ing the prediction errors of different channels of measurements
have equal variances and stochastic independence, the covariance
matrix of prediction errors is (Yuen 2010)∑

ε = σ2εIN0 (18)

where IN0 = N0 ×N0 identity matrix.
The likelihood function p(D|θ, C ) given dynamic data D and

Model class C, may be expressed as follows:

p(D|θ, C) = (2π)−NN0/2σ−NN0
ε exp −

NN0

2
Jg(θm; D, C)

[ ]
(19)

where the dynamic dataD consists of the measured time histories of
the excitation and system response. The uncertain parameter is de-
noted as θ, which includes the model parameters θm and the diag-
onal element of

∑
ε.

After the parameter θ = [θTm, σ
2
ε ]

T is updated, the posterior PDF
is given by

p(θ|D, C) = k0p(θ|C)(2π)−NN0/2σ−NN0
ε exp −

NN0

2
Jg(θm; D, C)

[ ]
(20)

where k0 = normalizing constant; and p(θ|C ) = prior PDF of the
uncertain parameters in θ. The goodness-of-fit function is given by

Jg(θm; D, C) =
1

NN0

∑N

n=1
‖yn − L0x(nΔt; θm, C)‖2 (21)

where x(nΔt;θm, C ) = model response based on the assumed class
of models and the parameter vector θm; yn = measured response at
time nΔt; and ‖·‖ = Euclidean norm of a vector. Based on the pos-
terior PDF p(θ|D, C ), various statistics can be analyzed for uncer-
tain parameters.

Posterior Distribution of Parameters
It is a challenging task to calculate the statistics characteristics of
the posterior PDF since it has a complex topological structure.
The Markov chain Monte Carlo (MCMC) technique was used to
obtain the statistics of the posterior distributions with accuracy
(Andrieu et al. 2003). For complicated models with many parame-
ters commonly encountered in Bayesian inference and statistical
physics, common MCMC algorithms such as Gibbs sampling or
Metropolis Hastings usually exhibit random walk behaviors that
suffer from the problem of inefficiency of parameter space explora-
tion (Neal 1992, 1998). Given that No-U-Turn Sampler (NUTS)
avoids inefficient exploration of the parameter space, it can con-
verge to the target posterior distribution quicker than common
random walk MCMC algorithms and is, therefore, less computa-
tionally expensive. This study utilized E-NUTS to generate
MCMC samples from the posterior distribution of the parameters
of a Bayesian model (Hoffman and Gelman 2014). The sampling
procedure is described as follows:
• Step 1. Assign initial values to Markov chain samples:

{θ01, θ
0
2, . . . , θ

0
h}, where h is the number of parameters.

• Step 2. Generate t values (t= 1, 2,…, T ) until the convergence
is achieved.
θt1 ∼ p(θ1|θt−12 , θt−13 , . . . , θt−1h , D, C)

θt2 ∼ p(θ2|θt1, θt−13 , . . . , θt−1h , D, C)
…
θtj ∼ p(θj|θt1, θt2, . . . , θtj−1, θt−1j+1, . . . , θ

t−1
h , D, C)

…
θmh ∼ p(θh|θt1, θt2, . . . , θth−1, D, C)
To reduce the influence of the initial samples on the Markov

chain, the first k′ samples have been cutoff to ensure that the gen-
erated samples satisfy the posterior PDF p(θ|D, C ). In this study,
the first 1,000 samples have been cutoff (Hoffman and Gelman
2014). The Markov chain samples {θ1, θ2, …, θh} with PDF
approaching p(θ1, θ2, …, θh|D, C ) can be obtained, where
θ1 = {θk+11 , θk+21 , . . . , θT1 }.

A specified number of samples obeying a complex posterior dis-
tribution can be generated from the defined Bayesian model by
means of E-NUTS. The parameter estimation based on Bayes’ the-
orem is shown in Fig. 7.

Identification Model
A method based on Bayes’ theorem is proposed to identify the IL
without relying on a BWIM system to obtain accurate vehicle infor-
mation (e.g., axle distance and axle weight). Bridge dynamic dis-
placement data (Module 3, output) and vehicle parameters

© ASCE 04023087-8 J. Bridge Eng.
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(Module 2, input) are obtained using the vision-based method. The
vehicle types are classified accurately (Module 1), and the vehicle
weight and distribution coefficient of axle load are obtained from
the Section “Estimation of Vehicle Loads (Module 2)”. The inver-
sion model (Module 4) of IL is built to obtain the posterior PDF
based on the Bayesian parametric estimation method in the Sec-
tions “Bayesian Inference,” “Bayesian Parametric Estimation,”
and “Posterior Distribution of Parameters.” The flow chart is
shown in Fig. 8.

The vision-based method for bridge displacement response
monitoring is prone to noises such as camera jitter. Based on
Eq. (10), the multivariate linear relationship after introducing the
error vector εm = [εm1 , ε

m
2 , . . . , ε

m
K ]

T is shown as follows:

Ym =WrI + εm (22)

where the virtual input data Wr corresponding to the output of
dynamic response are randomly generated. The displacement
response vector Ym(j) ∼ NK Wr(j)I ,

∑
K

( )
and error vector

εm ∼ NK 0,
∑

K

( )
are obtained through the linear relationship

based on the multivariate normal distribution probability model.
With a large amount of bridge displacement data {Ym(1),

Ym(2), …, Ym( j)} (bridge displacement data collected at each case
in the test) and corresponding virtual input data {Wr(1), Wr(2), …,
Wr( j)}, the likelihood function can be expressed as follows:

L(I , σ2ε |Ym, Wr) = p(Ym, Wr|I , σ2ε) = (2π)−KE/2
∑

K

∣∣∣ ∣∣∣−E/2
exp −

1

2

∑E

j=1
(Ym(j) −Wr(j)I)

T∑
K
−1
(Ym(j) −Wr(j)I)

{ } (23)

where E = number of bridge response conditions included in the
calculation.

In the framework of Bayesian parametric estimation, the prior
distribution of the parameters I = [I1, I2, . . . , IK−CQ ]

T and σ2ε are de-
fined. Since these parameters are independent of each other, the

joint prior distribution is expressed as follows:

p(I , σ2ε) =
∏K−CQ

i

p(Ii)p(σ
2
ε ) (24)

Considering the unknown parameters for estimation without
any prior knowledge, the noninformative prior is adopted, which
is defined as follows:

Ii ∼ N (0,100), i = 1, 2, . . . , K − CQ (25)

σ2ε ∼ IGam(0.001, 0.001) (26)

The aforementioned setting of I and σ2ε reflects the ignorance of
prior knowledge of unknown parameters. N (0,100) represents the
normal distribution with mean 0 and variance 100. This is set to en-
sure that the range of the bridge IL ordinate prior distribution is
large enough to effectively contain the true value of the bridge IL
ordinate and does not influence the posterior distribution (Ojo
et al. 2017; Wesner and Pomeranz 2021). To ensure the random ef-
fect of the error, the default noninformative prior distribution IGam
(0.001, 0.001) is chosen for σ2ε (Gelman 2006; Klein and Kneib
2016). IGam (0.001, 0.001) represents the inverse gamma distribu-
tion with shape parameter 0.001 and scale parameters 0.001. The
Bayesian parameter estimation results are mainly affected by the
likelihood function when there are sufficient data. The influence
of prior distributions can be ignored.

According to Bayes’ theorem, the joint posterior PDF of I and
σ2ε can be expressed by the likelihood function and joint prior

Fig. 7. Parameter estimation flow chart.

Fig. 8. The flow chart for the identification of IL of bridges.

© ASCE 04023087-9 J. Bridge Eng.
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distribution, as follows:

p(I , σ2ε |Ym, Wr) =
p(Ym, Wr|I , σ2ε)p(I , σ2ε)�

Θ p(Ym, Wr|I , σ2ε )p(I , σ2ε )dIdσ2ε
(27)

The marginal posterior PDF of the IL ordinate of an arbitrary
point i on the bridge can be obtained by the derivation of the
joint posterior PDF of parameters to be identified:

p(Ii|Ym, Wr) =
∫
ΘI2

∫
ΘI3

. . .

∫
ΘIK−CQ

∫
Θσ2

p(I , σ2ε |Ym, Wr)

dI1dI2 . . . dIi−1dIi+1 . . . dIK−CQdσ
2
ε

(28)

The maximum a posteriori (MAP) IMAP
i of the ordinate of IL can

be obtained by

IMAP
i = argmax

Ii
p(Ii|Ym, Wr) (29)

The calculation of the marginal posterior PDF involves a high-
dimensional multivariate integral formula. The MCMC algorithm
is utilized to estimate the marginal posterior PDF of the IL ordinate
by extracting random samples from the joint posterior PDF [Eq.
(27)] via E-NUTS sampling.

Numerical Simulations

Vehicle–Bridge Coupled System

The feasibility and accuracy of the proposed method are verified by
the numerical test of vehicle–bridge coupling vibration analysis.
The equation of motion for a bridge is expressed as follows:

[Mb]{Ÿ b} + [Cb]{Ẏ b} + [Kb]{Yb} = {Fb} (30)

where [Mb], [Cb], and [Kb] = vehicle mass, damping, and stiffness
matrices, respectively; {Yb} = vehicle displacement vector; and
{Fb} = vector of the wheel–road contact forces.

In this study, a simply supported girder bridge with two lanes is
established by means of grillage method in the software ANSYS,
with a span of 30 m and a width of 12 m, as shown in Fig. 9(a).
In this model bridge, five identical T-beam girders are arranged
under the bridge deck along the width of the bridge, which has a
bending stiffness of 1.08 × 1010 N·m2 and a linear density of
1.87 × 103 kg/m. Rectangle section and T-shape section dia-
phragms have a spacing of 6 m in the longitudinal direction, with
a bending stiffness of 2.90 × 105 and 5.10 × 109 N·m2, respectively.
The Rayleigh damping ratio with a coefficient of α= 1.76 and β=
1.20 × 10−3 is adopted to calculate the bridge dynamic response.

As shown in Fig. 9(b), a two-axle vehicle, represented by a com-
bination of rigid bodies connected by springs and damping devices,
was adopted in the numerical simulations, whereM denotes the ve-
hicle weight, m1 and m2 denote the weight of the front and the rear
axles, ks1 and ks2 denote the suspension stiffness, kt1 and kt2 denote
the tire stiffness, cs1 and cs2 denote the suspension damping, ct1 and
ct2 denote the tire damping, Iα denotes moment of inertia, and Di

denotes the axle spacing.
In a vehicle–bridge coupling simulation, the point-contact is

taken as the wheel–bridge contact condition. Meanwhile, the
road surface condition is set as Class B grade (ISO 2016). Road
roughness is generally simulated as a zero-mean Gaussian random
process in numerical simulation, which can be generated by the in-
verse Fourier transform of the power spectral density function, as

follows:

r(e) =
∑H
h=1

�������������
2Gq(Ωh)ΔΩ

√
cos (2πΩhe + βh) (31)

where r(e) = road roughness at the coordinate of e; βh = random
phase angle uniformly distributed between 0∼ 2π; ΔΩ and H = dis-
crete sampling interval and sampling number of spatial frequency,
respectively; Ωh = spatial frequency; and Gq(·) = power spectral
density function.

In the computation process, the matrix equation of the vehicle
subsystem was calculated by MATLAB program. The vehicle–
bridge interaction force was used for the bridge subsystem by intro-
ducing ANSYS. The dynamic displacement responses of the bridge
were ultimately extracted.

Simulation Setup

A coach truck was adopted to simulate passing over the model
bridge alone with randomly generated virtual axle loads. The cor-
responding vehicle parameters, such as front- and rear-axle
weights, suspension damping, tire damping, suspension stiffness,
and tire stiffness, were defined with selected values, as shown in
Table 2 (OBrien et al. 2010; Deng et al. 2018). It is recommended
to run as many loading cases as possible, with 30 being the mini-
mum number of cases.

(a)

(b)

Fig. 9. Bridge and vehicle models: (a) cross section of the bridge (unit:
mm); and (b) numerical model of the vehicle system.

© ASCE 04023087-10 J. Bridge Eng.
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Meanwhile, based on the vehicle data and information base
(Zhou et al. 2020), uncertain parameters, such as vehicle weight
(M ), are randomly generated by uniform distribution [U (min.,
max.)]. The distribution coefficient of the front-axle weight (a1) fol-
lows a normal distribution [N (mean, variance)] according to the
statistical results; hence, the distribution coefficient of the
front-axle weight (a1) is generated randomly according to the nor-
mal distribution. Virtual axle load (Wr

i ) is the product of vehicle
overall weight (M ) and axle load distribution coefficient (ai). M
and ai are generated based on the statistical information of vehicle
model as shown in Table 3.

Identification Result

Six hundred groups of virtual axle weights are randomly generated
for the Coach truck, in which the motion speed of the Coach truck
is 10 m/s and the axle spacing was 5.5 m. Furthermore, the corre-
sponding dynamic displacement response is obtained according
to the vehicle–bridge coupling system. In the vehicle–bridge cou-
pling system, the sampling frequency of the vertical displacement
of the bridge midspan is set as 100 Hz. According to the Eqs. (9)
and (12), it is known that the ordinate vector I of the IL to be esti-
mated contains 300 parameters, namely, I= [I1, I2, …, I300]

T. The
dynamic response and the virtual axle weight are then put into
the Bayesian model proposed in the Section “Identification of Influ-
ence Lines (Module 4)” to obtain the maximum a posteriori influ-
ence line (MAPIL) and posterior probability distribution of the IL.
Meanwhile, a realistic IL could be obtained by static loading of the
vehicle–bridge coupling system.

The posterior distribution of the IL ordinate can be intuitively
illustrated at each sampling point in Fig. 10, which reflects the

changes of the IL ordinate along the length of the bridge. The
width of the strip curve is positively correlated with the standard
deviation of the IL posterior distribution. The dynamic effect
makes some parts of the realistic IL locate outside of the 95% con-
fidence interval and makes the identified IL show some fluctuation.
The identification error is 5.25% according to the following
equation:

IErr =
∑Na

i=1 |I stai − IMAP
i |∑Na

i=1 |I stai | × 100% (32)

where IErr = percentage error between the MAPIL and realistic IL;
I stai and IMAP

i = ith ordinate values of realistic IL and MAPIL, re-
spectively; and Na = length of the bridge IL vector.

Parametric Study

Calculation of Condition Number
To explore the influence of the condition number of the bridge dis-
placement response on the identification results, the inversion of
the posterior distribution of the IL for the Coach truck with 50,
100, 300, and 600 groups of conditions are conducted, and the in-
fluence of condition number on the MAPIL identification results
evaluated. The motion speed of the Coach truck is 10 m/s and
the axle spacing is 5.5 m. The identification error of the MAPIL
gradually decreases with the increase of condition number, as
shown in Table 4. Furthermore, as shown in Fig. 11, the posterior
distribution range of the IL gradually narrows with the increase of
the condition number. From the foregoing, it can reasonably be in-
ferred that the accuracy of the MAPIL can be effectively improved
by sufficient observed data.

Driving Speed
To study the identification accuracy of the MAPIL at different
moving speeds of the vehicle, 600 groups of random conditions
are generated at each speed (10, 15, 20, 25, and 30 m/s) for the
Coach truck (axle spacing= 5.5 m). A comparison of MAPIL
under different speeds is shown in Fig. 12. When the vehicle
speed is 10–30 m/s, the identification error relative to the static
IL is 5.85%, 6.80%, 7.92%, 9.51%, and 12.13%, respectively.
The increase in motion speed causes the dynamic response of the
vehicle–bridge coupled system to be enhanced. Furthermore, the
amplitude of a bridge’s response is enhanced as the speed of the ve-
hicle increases, while the coupling condition between the vehicle
and bridge decreases, thereby leading to a decrease in the identifi-
cation accuracy of the MAPIL with the increase in vehicle motion
speed (Zhou et al. 2019, 2021b).

Table 2. Major parameters of the numerical vehicle model

Vehicle types m1, m2 (kg) kt1, kt2 (kN/m) ks1, ks2 (kN/m) ct1, ct2 (kN·s/m) cs1, cs2 (kN·s/m)

Coach truck 600, 600 1,500, 1,800 400, 400 3, 3 15, 20

Table 3. Random parameter distribution of vehicle numerical model

Vehicle types a1 M (kg)

Coach truck N(0.3580, 0.0252) U(6000, 18000)

Fig. 10. Results of displacement IL posterior distribution and MAPIL.

Table 4. Identification errors of MAPIL under different condition numbers

Condition number IErr (%)

50 10.31
100 10.67
300 7.79
600 5.25

© ASCE 04023087-11 J. Bridge Eng.
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Laboratory Tests

Experimental Setup

To investigate the accuracy of the IL identification model based on
Bayesian Theory (Module 4), experimental tests in a laboratory
were conducted. The vehicle–bridge coupled model is composed
of an acceleration ramp, a deceleration ramp, a bridge model, and
a vehicle model. The lengths of the acceleration ramp and deceler-
ation ramp are 3.0 and 3.1 m, respectively, and both ramps are
2.0 m in height. A horizontal section 1.5 m long is set at the
front end of the acceleration ramp to ensure that the passing vehicle
travels at a uniform speed. The bridge model is a simply supported
multigirder bridge manufactured from polymethyl methacrylate
with a scale ratio of 1:0.119, a Young’ s modulus of 2,795 MPa,
a density of 1,181.6 kg/m3, a length of 2.38 m, and width of
1.01 m (He et al. 2017). The vehicle model was hauled to a certain
height and then released from the acceleration ramp. It gains a cer-
tain speed before entering the bridge model, which can be changed
by adjusting the original position of the vehicle on the ramp, as
shown in Fig. 13(a). A three-axle truck, comprising two vehicle
bodies connected by a hinge, is adopted in this study. It has a
total length of 1.36 m and a width of 0.2 m. The space between

Axle A1 and Axle A2 is 0.31 m. The space between Axle A2 and
Axle A3 is 0.55 m. The load of Axles A1, A2, and A3 are W1, W2,
and W3, respectively, as shown in Fig. 13(b). The axle load can
be adjusted by adding/removing steel plates.

Six measured points were set at the bottom and deck of the
bridge. Since the length of the model bridge is only 2.38 m, the ve-
hicle model passes through the model bridge in a short time (≤2 s)
at the research speed (v1= 1.175 m/s, v2= 1.902 m/s, and v3=
2.987 m/s), and the maximum sampling frequency of the VDS
under actual field conditions is 30 Hz. Therefore, to obtain a
more abundant dynamic displacement response of the bridge and
to consider the Nyquist–Shannon sampling theorem comprehen-
sively, one laser displacement meter with the accuracy of 5 μm
and the sampling frequency of 1 kHz was employed to obtain the
vertical displacement response at the midspan, and three strain
gauges were installed under Girder 2. Two resistive strain gauges
were installed at the entrance and exit of the bridge to determine
the motion speed of the vehicle. The layouts of test points are
shown as Fig. 13(c).

The statistical information of axle load distribution coefficient is
obtained by adjusting the amount or position of steel plates on the
vehicle model. The distribution ranges (min., max.) of the axle load
distribution coefficients for a1–a3 were (0.12, 0.38), (0.22, 0.46),

(a) (b)

(c) (d)

Fig. 11. IL posterior distribution under different condition numbers: (a) 50; (b) 100; (c) 300; and (d) 600.

© ASCE 04023087-12 J. Bridge Eng.

 J. Bridge Eng., 2023, 28(12): 04023087 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Ji
nn

an
 H

u 
on

 0
9/

19
/2

3.
 C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



and (0.26, 0.52), respectively, which are assumed to be a truncated
normal distribution (the mean and variance as shown in Table 5).
The model vehicle’s motion speed can be adjusted by changing
the release position at different heights on the acceleration ramp.
Since the driving speed is affected by the friction force of the bridge
deck and the rail, the average speed of the vehicle is used to calcu-
late the real-time position of the axle. Furthermore, three motion
speeds (v1= 1.175 m/s, v2= 1.902 m/s, and v3= 2.987 m/s) under
each loading case are considered, and the drop heights of the
front wheels of the model vehicle from the horizontal section cor-
responding to the three motion speeds are 0.053, 0.121, and
0.351 m, respectively. The foregoing motion speeds are equal to
10–32 km/h for an actual full-scale vehicle.Fig. 12. MAPIL identification results under different driving speeds.

(a)

(c)

(b)

Fig. 13. Experimental setup: (a) test platform; (b) scaled three-axle vehicle model; and (c) sensor positions (unit: mm).

Table 5. Axle-load coefficient of vehicle model

a1 a2 a3 M (kg)

N(0.2366, 0.0589) N(0.3678, 0.0615) N(0.3955, 0.0500) U(23, 42)
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Bridge Responses Analysis

The vehicle motion speed is adjustable to within 1.175–2.987 m/s.
By adding/removing steel plates [shown in Fig. 13(b)], as many load-
ing cases as possible are increased in diversity, and 200 loading cases

(M1–M200, loads up to 41.219 kg, approximately 0.66 kg per load-
ing case) were designed by changing the vehicle from an unloaded
state to a fully loaded state. Take the loading case of M1 (W1=
5.7 kg, W2= 11.3 kg, and W3= 11.145 kg) as an example.
Three vehicle motion speeds (v1= 1.175 m/s, v2= 1.902 m/s, and

(a) (b)

(c) (d)

(e) (f)

Fig. 14. Measured strains and displacements: (a) v1-strain; (b) v1-displacement; (c) v2-strain; (d) v2-displacement; (e) v3-strain; and
(f) v3-displacement.

© ASCE 04023087-14 J. Bridge Eng.
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v3= 2.987 m/s) were investigated for each loading case to increase
the diversity of the test samples. The speed of the vehicle can be iden-
tified from the signals measured from Test points 5 and 6. The sam-
pling frequency of the test points is 1 kHz to obtain a detailed IL. The
collection results are plotted in Fig. 14. The local vibrations related to
the motion speed of vehicles can be observed, which appear on the
measured signals due to wheel–deck interaction.

Identification Result

The dynamic response of displacement and strain can be measured
by Test points 2 and 4, respectively. The axle load distribution co-
efficients follow the normal distribution [N (mean, variance)] ac-
cording to the statistical results of the vehicle model, and then
the axle load distribution coefficients are randomly generated

(a) (b)

(c) (d)

(e) (f)

Fig. 15. Results of displacement IL posterior distribution and MAPIL under different motion speeds: (a) posterior distribution of IL under v1 con-
dition; (b) MAPIL under v1 condition; (c) posterior distribution of IL under v2 condition; (d) MAPIL under v2 condition; (e) posterior distribution of
IL under v3; and (f) MAPIL under v3 condition.
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according to the normal distribution. To ensure the uncertainty of
the virtual axle weight, the vehicle overall weight (M ) is generated
randomly according to a uniform distribution [U (min., max.)]
based on the statistically obtained distribution interval (min.=
23 kg, max.= 42 kg). Virtual axle load (Wr

i ) is the product of vehi-
cle overall weight (M ) and axle load distribution coefficient (ai).M
and ai were generated based on the statistical information of the ve-
hicle model as shown in Table 5. The dynamic response and the vir-
tual axle weight were then put into the Bayesian model proposed in
Section “Identification of Influence Lines (Module 4)” to obtain the
MAPIL and posterior probability distribution of the IL. Meanwhile,
a realistic IL could be inversely calculated through Eq. (10) or Eq.
(11), based on the vehicle weighing results and corresponding mea-
sured responses.

The posterior distribution of the displacement IL under different
motion speeds is obtained by Bayesian inversion calculation of the
IL parameters in the full-length range of the bridge model, as

shown in Figs. 15(a, c, and e). With the increase of driving
speed, the probability density corresponding to the MAPIL de-
creased significantly, and the identification results of the IL ordi-
nate indicate greater uncertainty. As shown in Figs. 15(b, d, and
f), the identification results of MAPIL are compared with the static
displacement IL. The identification errors are 3.09%, 4.17%, and
4.88%, respectively. Therefore, the error of MAPIL identification
results increases with the increase in speed. The reason for this is
that the dynamic response of the coupled vehicle–bridge system in-
creases as the speed of motion increases, which causes the ampli-
tude of the bridge response to enhance and move more and more
away from the static baseline.

In real life, an increase of 10 km/h in vehicle driving speed
will increase the identification error of MAPIL by almost 1%.
Furthermore, in real life, when the vehicle is traveling at a speed
of 1 m/s, the identification errors of IL obtained by least square
method for time domain model (LS), regularized fast Fourier

Table 6. Estimation results of Imid under different motion speeds

Condition MAP (mm/N) True value (mm/N) Standard deviation 95% confidence interval (mm/N) Error IErr (%)

v1 −4.685 × 10−5 −4.72 × 10−5 1.29 × 10−6 [−4.431 × 10−5, −4.945 × 10−5] 0.74
v2 −4.578 × 10−5 −4.72 × 10−5 1.23 × 10−6 [−4.331 × 10−5, −4.579 × 10−5] 3.00
v3 −4.532 × 10−5 −4.72 × 10−5 1.22 × 10−6 [−4.295 × 10−5, −4.780 × 10−5] 3.98

(a)

(c)

(b)

Fig. 16. Posterior distribution of samples under different motion speeds: (a) v1; (b) v2; and (c) v3.
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transformation method for frequency domain (FD), and Tikhonov
regularization method for time domain model (L2R) were 5.5%,
16.5%, and 3.6%, respectively. Therefore, an increase in speed of
1 m/s with a decrease in accuracy of 1% is acceptable (Zheng
et al. 2019a). Additionally, under different driving speed conditions
(v1, v2, and v3), the MAP of parameter Imid approaches the ordinate
value of the displacement IL. The estimation results of the param-
eter Imid are presented in Table 6 and the posterior distribution of
samples is shown in Fig. 16.

Field Tests

Rapid Bridge IL Identification Test Setup

To verify the effectiveness and robustness of the proposed method,
a field test was conducted on a four-span continuous box-girder
bridge in Changsha, China. The main span layout of the bridge is
25 m+ 32 m+ 32 m+ 25 m, with basin-type rubber supports,
cast-in-place concrete box girders, reinforced concrete piers, and
pile foundations. The bridge employs seat abutments and column
bents with deep foundations, as shown in Fig. 17.

The bridge has four traffic lanes. The field test focused on the
vertical displacement of the measurement point in the midspan of
the bridge. A VDS was fixed on the southeast bank of the bridge
for stationary noncontact sensing by attaching a 250 mm×
250 mm marker in the midspan. Under the field test conditions,
the sampling frequency was chosen as high as possible and the
Nyquist–Shannon sampling theorem was considered comprehen-
sively to obtain a more abundant dynamic displacement response
of the bridge to get a detailed IL. The sampling rate of the system
was set as 30 Hz, and measuring precision was 0.001 mm. The
VDS is equipped with a black-and-white array camera for measure-
ment with a resolution of 1,920 × 1,200 pixels and a focal length of
100–400 mm.

A 3A–10W calibration truck, shown in Fig. 17(a), was prepared
for the moving test at the speeds of 10–30 km/h. By changing the

vehicle load, as many loading cases as possible were run within the
given time frame for testing, which ultimately ended up being 30
tests. Thirty loading cases (M1–M30, loads up to 24,540 kg, ap-
proximately 400 kg per loading case) were designed by changing
the vehicle from empty state to a fully loaded state. To ensure
the accuracy of MAPIL identification results, it is recommended
that the loading cases should be no lower than 30. Furthermore,
three motion speeds (10, 20, and 30 km/h) were designed for
each loading case. For each test, the vehicles were driven over
the bridge from one end to the other end, as shown in Fig. 17(b).

Because only static responses are of interest for IL identifica-
tion, the FFT low pass filter (frequency-domain method) (Brigham
1988; Moon and Choi 2000) is used to discard the dynamic part of
the raw data while keeping the static responses (Khuc and Catbas
2018). The natural frequency of the bridge is 5.18 Hz, which can
be regarded as a cutoff frequency of dynamic fluctuation elimina-
tion (Zheng et al. 2022). The comparison of the raw data with
the static displacements for a vehicle loading case of M12 and a ve-
hicle motion speed state of 10 km/h is shown in Fig. 18. The cor-
responding realistic IL for each condition can be obtained by Eq.
(8) or Eq. (9) based on the static responses of the bridge midspan
measurement point for 3A–10W truck under different axle loads
(preknown) and vehicle motion speed states. Then, the static base-
line IL can be obtained by calculating the mean results of IL for a

(a)

(b)

Fig. 17. (a) Panoramic view of the bridge; and (b) vertical view and
truck routines (unit: m).

Fig. 18. Raw data and extracted static data at the midspan of the
bridge.

Fig. 19. The static IL at midspan of the bridge.
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3A–10W truck under 3 vehicle motion speeds and 30 loading con-
ditions, as shown in Fig. 19.

The midspan displacement responses of the bridge caused by a
2A–6W truck in random traffic flow passing alone over the bridge
were collected, as many as possible within the given time frame,
with a total of 56 records ultimately obtained to ensure the accuracy
of MAPIL identification. The midspan displacement response of
the bridge is 0 when the truck passes over the bridge piers, and
the motion speed of the truck passing over each span of the bridge
is determined based on the time difference and distance between
the truck passing through the adjacent piers.

Video Identification and Vehicle Information Prediction

An UAV was used to obtain the vehicle image information on the
test bridge, and the vehicle identification and classification algo-
rithm proposed in the Section “Identification of Vehicle Types
(Module 1)” was used to identify the vehicle type of vehicles pass-
ing over the bridge with more than a 99% accuracy.

The distribution intervals of the uncertain parameters of axle
spacing, overall weight, and axle load distribution coefficient of
the identified vehicle types were defined according to the vehicle
data and an information base established. For a 3A–10W truck,
the overall weight was obtained by uniform random sampling in
the overall weight interval, and the virtual axle load (Wr

1 , W
r
2 ,

andWr
3 ) of each axle was obtained according to the established ve-

hicle data set [Section “Estimation of Vehicle Loads (Module 2)”]
under the premise of satisfying the distribution interval of axle load
distribution coefficient. Then, the virtual axle load distribution of
each axle was obtained, and the axle spacing was obtained by mea-
surement, as shown in Table 7, where the virtual axle load (Wr

i ) of
each axle is equal to the overall weight multiplied by the axle load
distribution coefficient of its corresponding axle.

For a 2A–6W truck, the distribution of virtual axle load (Wr
i ) of

each axle was obtained by the same method, but the difference was
that the distribution of axle spacing was obtained according to the
vehicle data and information base established, and the axle spac-
ings were obtained by uniform random sampling from the distribu-
tion of axle spacing, as shown in Table 8. Therefore, the virtual
matrix of axle load was obtained by virtual axle load and axle
spacing.

Identification Results

The measured static responses and the virtual axle weight matrix
parameters were then put into the Bayesian model proposed in Sec-
tion “Identification of Influence Lines (Module 4)” to obtain the
MAPIL and posterior probability distribution of the IL. The poste-
rior distribution of the displacement IL for a 3A–10W truck and a
2A–6W truck under variable motion speeds (speed varies between
10–30 km/h at moment to moment) were obtained by Bayesian in-
version calculation of the IL parameters in the full-length range of
the bridge model, as shown in Fig. 20.

The posterior distribution of displacement IL of a 2A–6W truck
has a wider range than that of a 3A–10W truck, meaning that the
variance of the ordinate posterior distribution is large. This is
mainly because the axle weight of 3A–10W trucks was obtained
from the vehicle database in constructing the virtual axle weight
matrix, while their axle spacing was measured. However, the
axle weight and axle spacing of 2A–6W trucks were obtained
from the vehicle database. In addition, the overall weight of a
2A–6W truck is smaller than that of a 3A–10W truck, so a 2A–
6W truck produces less excitation response to the bridge, which
makes the dynamic disturbance in the collected dynamic displace-
ment response have more influence on the static response in the raw
data, increasing the midspan displacement response error of a 2A–
6W truck. Hence, the posterior distribution presents greater
uncertainty.

Fig. 21(a) compares the identification results of MAPIL for a
3A–10W truck under different speeds (10, 20, and 30 km/h) with
the static baseline displacement. The errors are 3.73%, 4.30%,
and 4.62%, respectively. Therefore, the error of MAPIL identifica-
tion results increases with the increase in motion speed. Fig. 21(b)
compares the identification results of MAPIL for the 3A–10W
truck and the 2A–6W truck under variable speeds (speed varies be-
tween 10–30 km/h at moment to moment) with the static baseline
displacement. The errors are 3.14% and 11.48%, respectively.
The MAPIL results were sharper for the 2A–6W truck with the
span where the measurement point of the test bridge was located,
indicating that the truck type had a greater influence on the
MAPIL identification results.

(a)

(b)

Fig. 20. Identification results of IL posterior distribution under vari-
able motion speeds: (a) 3A–10W truck; and (b) 2A–6W truck.

Table 8. Virtual axis weight matrix parameters of a 2A–6W truck

D (mm) Wr
1 (kg) Wr

2 (kg)

N(3,489.46, 669.34) N(4,270.86, 1,362.50) N(6,565.57, 2,335.93)

Table 7. Virtual axis weight matrix parameters of a 3A–10W truck

D1 (mm) D2 (mm) Wr
1 (kg) Wr

2 (kg) Wr
3 (kg)

3,600 1,400 N(4,695.43, 1,389.83) N(5,880.83, 1,720.50) N(5,880.83, 1,720.50)
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To further evaluate the convenience and accuracy of the pro-
posed method, the results of the proposed algorithm and IL identi-
fication algorithm based on AAIL proposed by the authors in
previous research (Zhou et al. 2021b) were compared for the IL
identification of the bridge midspan measurement points under var-
iable speed motions of the 3A–10W truck.

The process of IL identification algorithm based on AAIL is as
follows (Zhou et al. 2021b).

First, obtain the axle weight interval [wi, wi] (i= 1,…, Q) of
any axle of the vehicle under all loading conditions, where wi

and wi denote the lower and upper bounds of the weights matrix
of the ith axle of a Q-axle vehicle, respectively. Representing the
axial weight interval variable [wi, wi] as the affine form (Stolfi
and De Figueiredo 1997; Moore et al. 2009), we get

wI
i = [wi, wi] = xi0 + xi1 × εi (33)

where xi0 = central value of the affine form wI
i ; xi1 = partial devi-

ations and is defined as a series of floating-point numbers; and
εi = noise symbols whose values are unknown but assumed to lie
within the interval of [−1, +1]. During the computation process,
the data set {xi1} determines the uncertainty value and {εi} offers
a possibility to take account and keep track of variable dependency.

Therefore, the matrix [W ]K ,K−CQ
in Eq. (10) can be simplified as

follows:

WI = X0 + X1ε1 + X2ε2 + · · · + XQεQ (34)

Setting Bi = X−1
0 Xi, AI = (LI + B1ε1 + B2ε2 + · · · + BQεQ)

−1,
where LI is the identity matrix. The upper and lower bounds of
this interval matrix can be calculated by applying the Newman ex-
pansion to AI (Degrauwe et al. 2010), which results in

�A = LI +
∑Q
i=1

Bi

∣∣∣∣
∣∣∣∣ + ∑Q

i=1
Bi

∣∣∣∣
∣∣∣∣
2[
LI −

∑Q
i=1

Bi

∣∣∣∣
∣∣∣∣
]−1

A = LI −
∑Q
i=1

Bi

∣∣∣∣
∣∣∣∣ + ∑Q

i=1
Bi

∣∣∣∣
∣∣∣∣
2[
LI +

∑Q
i=1

Bi

∣∣∣∣
∣∣∣∣
]−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(35)

The upper and lower bounds of the IL can be obtained by com-
bining Eq. (10) as follows:

{I I} = AX−1
0 {Ym}

{I I} = �AX−1
0 {Ym}

{
(36)

Considering a classification problem, the input data set in the
support vector machine (SVM) are represented as the vectors
�qi ∈ Rn with corresponding labels. Solve for the upper and lower
bounds of IL in each case, and the label values “+1” and “−1”
are given to the upper and lower bounds of IL, respectively.
During the calculation process, given a data set (�qi, lai), �qi ∈ Rn,
lai∈ {− 1,+ 1}, i= 1,…, n, where (�qi, lai) is labeled as the training
data set. Then, the quadratic optimization problem is constructed
and solved by the sequential minimal optimization algorithm.
The binary classification and primal optimization problem could
be stated as follows:

min
α

1

2

∑n
i=1

∑n
i=1

αiαjlailajϕ(qi · qj) −
∑n
i=1

αi � s.t.

∑
αilai = 0

0 ≤ αi ≤ PF

{

(i = 1, . . . , n) (37)

where ϕ(q) = a nonlinear function that maps the input data to the
feature space; αi≥ 0 and αj≥ 0 = Lagrange multipliers; and PF =
penalty parameter of the error term defined by the users.

The optimal decision function can be expressed as follows:

f (q) = sign
∑n
i=1

α*i laiκ(qi, q) + b*
( )

(38)

where κ = SVM kernel function, which could effectively avoid the
dimensional catastrophe problem of the algorithm. The radial-
based function (RBF) is selected for the SVM classification due
to its wide convergence domain and powerful nonlinear mapping
capability (Smola and Schölkopf 2004). The RBF can be expressed
as follows:

κ(qi, qj) = exp −
g · |qi − qj|2

2

( )
(39)

A good setting of the parameters PF and g, which is estimated by
a grid search method based on cross-validation, and the correspond-
ing model is the final SVM. Input the block grid pixel points into the
SVM to obtain decision classification results, and then extract the co-
ordinates of the gradient change to form the approximate IL.

From the statistical results of 30 loading cases, the accurate
weight interval of the three axles were obtained as (3,870,
6,720), (4,120, 9,410), and (4,020, 9,510) kg. Using M12 (motion
speed of 10 km/h) as an example, the distinguished distribution in-
tervals of the displacement IL are shown in Fig. 22(a). Based on the

(a)

(b)

Fig. 21.MAPIL identification results: (a) 3A–10W truck under differ-
ent motion speeds; and (b) 2A–6W truck and 3A–10W truck under var-
iable motion speeds.
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obtained IL intervals of 90 testing cases (three motion speeds for
each loading case), the SVM was employed to distinguish the ac-
tual IL among the various envelop solutions. Furthermore, various

tests were conducted to investigate the identification efficiency
under different driving and loading states. The calculated results
of displacement IL distinguished by SVM are shown in Fig. 22(b).

As shown in Fig. 23, the MAPIL and SVM identification results
of 3A–10W trucks under variable speed motion were compared
with the static baseline displacement IL, and the identification er-
rors were 3.14% and 6.99%, respectively. The results showed
that the prediction accuracy of both methods was relatively higher.
The advantage of the method proposed in this paper is that the dis-
placement IL can be obtained based only on the response of the
bridge measurement location combined with the vehicle parameter
information obtained from video recognition. The method does not
need accurate vehicle axle load intervals and axle spacing, and the
accuracy of displacement IL identification is slightly higher.

Conclusions

This paper proposes a noncontact method to identify IL of single-
lane highway bridges based on machine vision. The vehicle type
was obtained by a YOLO4 network with CBAM. The virtual
axle load matrix parameters were obtained based on the vehicle
data and information base established. Unit IL decomposition
method and Bayesian parameter estimation were utilized to deter-
mine the IL. The feasibility and accuracy of the proposed method
were investigated through laboratory and field experiments. The
conclusions are summarized as follows:
(1) The YOLOv4 network combined with CBAM was able to

identify the vehicle types under various traffic flow scenes, il-
lumination conditions, and vehicle speeds. The accuracy was
higher than 96%. The identified vehicle type was then used
to determine vehicle parameter information according to statis-
tical results of vehicle types and vehicle parameter information.

(2) The IL identification method based on unit IL decomposition
and Bayesian parametric estimation has a relatively high accu-
racy for IL identification. The identification accuracy of dis-
placement MAPIL is lower than 5% according to laboratory
experiments. The identification accuracy of displacement
MAPIL of the 3A–10W truck is also lower than 5%, according
to the field experiments. The MAPIL identification accuracy
for the displacement of the 2A–6W truck passing alone over
the bridge in stochastic traffic flow is 11.48%. The numerical
simulation verifies that the MAPIL identification accuracy in-
creases with the number of conditions. Numerical simulations,
laboratory tests, and field experiments have demonstrated that
MAPIL identification accuracy decreases with increasing vehi-
cle speed.

(3) Both MAPIL and AAIL control the displacement IL identifica-
tion error under varying speeds of the 3A–10W truck within an
acceptable range, with errors of 3.14% and 6.99%, respec-
tively. Compared with the AAIL method, the method proposed
in this paper without having to obtain accurate vehicle axle
load interval and axle spacing offers higher accuracy in identi-
fying displacement IL. Future studies can be conducted to en-
hance the accuracy of the proposed method through finer
classification of vehicle types, and the identification of a 2A–
6W truck at different speeds.
The method proposed in this paper combines computer vision

technology to accomplish IL recognition of single-lane bridges
without preknown accurate vehicle axle load intervals and axle
spacing. Although the method is currently limited in application
to IL identification of single-lane bridges, it shows great potential
identifying ILs on multilane bridges. Conversely, the mixed re-
sponse of multivehicle excited bridges and multilane bridges can

Fig. 23. MAPIL and SVM identification results.

(a)

(b)

Fig. 22. AAIL identification results: (a) results of upper and lower
bound of IL intervals distinguished by AA; and (b) results of displace-
ment IL distinguished by SVM.
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be effectively separated by advanced methods such as the blind
source separation algorithm. It is therefore suggested that future re-
lated research should focus on IL identification of multivehicle ex-
citation and multilane bridges.
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Notation

The following symbols are used in this paper:
AAP = average accuracy of all categories;

Ai = the ith axis;
AP = accuracy of the model in a certain category;

AvgPool = channel-based global average pooling;
ai = axle load distribution coefficient;
C = model class;

[Cb] = vehicle damping matrix in numerical model;
Ci = sampling point difference between the first axle

and the ith axle;
cs1, cs2 = suspension damping of the front and the rear

axles in numerical model;
ct1, ct2 = tire damping of the front and rear axles in

numerical model;
D = dynamic data;
Di = axle spacing;
DQ = distance from Axle-1 to Axle-Q;
E = number of bridge response conditions included

in the calculation;
E[·] = expectation;
F = input feature map;
F′ = output feature map of the channel attention

module;
F′′ = feature map output by the CBAM;
f = sampling frequency;

f7×7 = convolution operation with the filter size of 7 × 7;
FN = number of positive samples incorrectly

predicted;
FP = number of negative samples incorrectly

predicted;
{Fb} = vector of the wheel–road contact forces in

numerical model;
G = number of detected categories;

Gq(·) = power spectral density function;
H = sampling number of spatial frequency;
h = number of parameters;

I(K−Ci) = influence coefficient of the bridge
corresponding to the ith axle;

{I}K−CQ ,1

= vector consisting of the bridge influence line
(IL) ordinate;

IN0 = N0 ×N0 identity matrix;
Ii = IL ordinate of point i;

IMAP
i = maximum a posteriori IL ordinate of point i;
Iα = inertia moment in numerical model;

IErr = percentage error between maximum a posteriori
influence line (MAPIL) and realistic IL;

I stai = ith ordinate values of realistic IL;
Imid = midspan position IL ordinate;
{II} = interval of the IL vector;

{I I}, {II} = calculated values of the upper and lower bounds
of the IL;

K = sampling number of measurements;
[Kb] = vehicle stiffness matrix in numerical model;
k0 = normalizing constant;
k′ = number of samples cutoff;

ks1, ks2 = suspension stiffness of the front and the rear
axles in numerical model;

kt1, kt2 = tire stiffness of the front and rear axles in
numerical model;

L = length of the bridge;
L0 = the transfer matrix representing the input–

output relationship of the system;
LI = identity matrix;
lai = label value;
M = vehicle weight;

MaxPool = channel-based global maximum pooling;
[Mb] = vehicle mass matrix in numerical model;

Mc(F ) = channel attention map output by the channel
attention module;

Ms(F′) = spatial attention map output by the spatial
attention module;

m1, m2 = weight of the front and the rear axles in
numerical model;

N = number of observations;
N0 = number of observed degrees of freedom;
Na = length of the bridge IL vector;
Nd = sum of the number of degrees of freedom;
PF = penalty parameter of the error term defined by

the users;
Q = number of vehicles axles;
�qi = the vector with label;

r(e) = road roughness at the coordinate of e;
TP = number of positive samples correctly predicted;
Δt = sampling time step;
V = vehicle velocity;
Wi = axle load;
Wr

i = virtual axle load;
[Wr] = virtual axis load matrix;

[W ]K ,K−CQ
= axle load matrix;

wi, wi = lower and upper bounds of weights matrix of
the ith axle of a Q-axle vehicle;

x(t) = dynamical system, model response output
vector at time t;

x(0) = initial condition of the model;
xi0 = central value of the affine form;
xi1 = partial deviations;
yTk = k-point load effect;

{Y}K,1 = responses vector collected at each time step;
yn = measured response;

{Yb} = vehicle displacement vector in numerical model
Ym = displacement response vector.
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αi, αj = Lagrange multipliers;
βh = random phase angle uniformly distributed

between 0 and 2π;
δnn′ = Kronecker delta function;
ε = prediction error;

εm = error vector;
εi = noise symbols;
θ = unknown parameters;

θm = model parameters;
κ = SVM kernel function;
σ = sigmoid function;
ψ = observed data;
ψi = value of the ith observation;∑
ε = N0 ×N0 covariance matrix of the prediction

error process;
ϕ(q) = nonlinear function that maps the input data to

the feature space;
ΔΩ = discrete sampling interval of spatial frequency;
Ωh = spatial frequency; and
⊗ = element-wise multiplication.
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“Experimental testing of a moving force identification bridge
weigh-in-motion algorithm.” Exp. Mech. 49: 743–746. https://doi.org
/10.1007/s11340-008-9188-3.

Siwowski, T., M. Rajchel, T. Howiacki, R. Sieńko, and Ł Bednarski. 2021.
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