Journal of Lanzhou University: Natural Sciences, 2019, 55(6) / December

考虑填充墙刚度影响的实测高层建筑 非线性抗震性能分析

周 云, 裴熠麟, 周 祎, 易伟建

湖南大学 工程结构损伤诊断湖南省重点实验室,土木工程学院,长沙 410082

摘 要:以广西来宾高层建筑测试项目中的一栋剪力墙结构为研究对象,在对其进行环境振动测试的基础上,依据现场实测模态数据对建立的结构有限元模型进行参数修正,评估结构的抗震性能.在 Perform-3D中建立该高层结构的初始有限元模型,采用与PKPM设计模型相同的处理方式研究填充 墙的影响,结构的模态周期计算结果表明,两类模型具有较好的可比性.通过在Perform-3D模型中 添加斜撑单元对填充墙进行模拟,利用现场实测数据对斜撑单元的特征参数进行修正.对考虑和未 考虑填充墙刚度影响的结构有限元模型分别进行了增量动力分析,评估潜在危险性水平地震作用下 结构的整体抗震性能.结果表明,初始模型的最大层间位移角和顶层位移约为校验模型的1.1~1.4 倍,最大基底剪力却是校验模型的40%~60%.

关键词: 高层建筑; 模型校验; 填充墙; 抗震性能; 增量动力分析

中图分类号: xxxx 文献标识码: A 文章编号: 0455-2059(2019)06-0001-10 DOI: 10.13885/j.issn.0455-2059.2019.06.001

Nonlinear seismic performance analysis of on-site tested high-rise buildings to consider the impact of infilled wall stiffness

Zhou Yun^{1, 2}, Pei Yi-lin², Zhou Yi², Yi Wei-jian²

Key Laboratory of Damage Detection of Hunan Provincial, School of Civil Engineering, Hunan University, Changsha 410082, China

Abstract: Based on the on-site random vibration test for the high-rise buildings in Laibin, Guangxi Province, the finite element (FE) model of a high-rise shear wall structure was built in Perform-3D to conduct a seismic behavior research, and the corresponding parameters of the analytical model was corrected by the modal information on high-rise buildings obtained from on-site vibration tests. A primary model of high-rise buildings was built by Perfom-3D where the non-structural component as infilled wall was treated with the same modeling strategy as that of PKPM. The calculation result of modal periods suggested a good comparability between the two models. The diagonal bracing element calibrated by the measured records was added to simulate the behavior of an infilled wall. The incremental dynamic analyses were conducted in the primary and calibrated structure FE model to evaluate the influence of the infilled stiffness to structural performance under the potential hazardous seismic actions. The results revealed that the maximum inter-story drift and the roof displacement of the primary FE model were approximately

 收稿日期: 2018-08-07 修回日期: 2018-12-05
基金项目: 国家自然科学基金项目(51338004); 国家重点研发计划专项项目(2016YFC0701400); 长沙市科技计划项目(KQ1706019)
作者简介: 周 云(1979-), 男, 湖南长沙人, 副教授, 博士, 博士研究生导师, e-mail: zhouyun05@gmail.cn, 研究方向为高层抗震分析和结构健康监测. 1.1~1.4 times larger than the calibrated FE model, while the maximum base shear was $40\% \sim 60\%$ less contrarily.

Key words: high-rise building; model calibration; infilled wall; seismic performance; incremental dynamic analysis

随着轻质建筑材料的广泛应用,高层建筑的 刚度和阻尼比等特性参数随之减小,导致结构对 风振、地震及环境激励等外部作用更加敏感,因此 研究水平作用下高层建筑的结构特性具有重要意 义.由于现行抗震设计计算方法与结构的模态信 息密切相关,而高层建筑的抗震性能与其动力特 性直接相关,因此获取结构实际动力特性对其抗 震性能的评估尤为重要.目前可通过随机振动测 试、强迫振动测试和地震动测量等方法获取建筑 结构的动力特性.

Brownjohn 等¹¹对新加坡一栋 26 层建筑进行 了现场动力测试,研究结构在风等横向荷载作用 下的响应信息; Li 等¹²¹对香港某 370 m 高层建筑进 行了足尺模态测试,获得了结构的自振频率及阻 尼特性; Xu等¹³利用希尔伯特-黄变换及随机减量 法对深圳地王大厦在 York 台风中记录下的结构响 应数据进行了分析; Li等¹⁴对上海金茂大厦进行了 现场风振测试:易伟建等5对深圳市某高层建筑进 行了环境振动测试,对比分析了 PKPM 设计结果 与振动测试识别结果,提出了一种填充墙计算模 型的修正方法; Li 等¹⁰在台北 101 大厦上建立了一 套完整的结构健康监测系统,以研究风和地震作 用对高层建筑的影响; Liu 等¹⁷在天津 117 大厦上 建立了一套包含加速度、风速、位移、温度和应变 监测装置在内的结构健康监测系统; Zhou 等¹⁸对 来宾市十栋钢筋混凝土高层建筑进行了随机振 动测试,利用实测模态信息修正结构有限元模 型,对小震作用下线弹性阶段的结构响应进行了 评估.

在建筑结构的抗震计算中,填充墙作为一种 必要的非结构构件,在地震作用下发生开裂后其 强度和刚度会随之降低,并造成周围结构构件开 裂及局部滑移,导致二者的接触长度发生变化,对 整体结构的抗震性能产生较大影响.在结构设计 阶段,国家规范通常不考虑填充墙的刚度影响,只 对其质量进行计算,并忽略了填充墙与结构构件 之间复杂的作用关系,统一采用周期折减系数来 综合考虑由填充墙刚度引起的整体结构内力变 化^{19]}. 国家规范建议的周期折减系数取值范围较小,其合理性值得探讨. 建筑结构的实测结果表明^{110]},高层建筑计算模型的基本周期通常与实际结构存在一定差异,这大多是由于设计过程中对填充墙等非结构构件进行忽略或不恰当建模引起的,可能导致无法对结构性能进行准确评估. 结构在大震作用下往往会进入非线性阶段,填充墙随着自身破坏的加剧,刚度也会逐渐降低,并可能造成结构整体刚度突降,因此有必要对真实情况下的结构抗震性能进行评估.

传统时程分析方法仅能获取特定地震动记录 下结构的受力和变形,无法分析因地震动参数变 化导致的结构反应随机性影响,因此评价潜在危 险性水平地震下填充墙对高层结构的影响尤为必 要.增量动力分析(incremental dynamic analysis, IDA)以弹塑性时程分析为基础,能够综合反映建 筑结构因地震动强度变化而历经的弹性、弹塑性 直至坍塌的全过程,有效弥补了单一时程分析对 结构性能评估的不确定影响^[11].

本研究依托广西来宾高层建筑随机振动测试 项目,在对多栋高度100m左右的钢筋混凝土高 层建筑结构的模态参数进行识别的基础上,从中 选出一栋剪力墙结构进行研究分析.在非线性分 析软件 Perform-3D 中建立结构的初始有限元模 型,其中针对填充墙等非结构构件采用与PKPM 设计软件相同的思路,通过对比分析计算模型与 设计模型的模态周期值来验证所建立模型的正确 性,从而代替PKPM软件进行结构性能计算.通过 在 Perform-3D 模型中加入斜撑单元来模拟填充 墙的刚度作用,并利用现场环境振动测试获得的 模态数据对结构初始有限元模型进行参数校验. 利用校验后的 Perform-3D 模型进行 IDA (??????????????)分析,从最大层间位移角、最大 基底剪力、顶层位移三个方面与未考虑填充墙刚 度影响的初始模型计算结果进行比较,研究了潜 在危险性水平地震动作用下填充墙对高层结构整 体抗震性能的影响,对国家规范建议的周期折减 系数的合理性进行了分析.

1 基于IDA的抗震性能分析方法

IDA分析是指对结构施加一条或多条地震动 记录,其中针对每条地震动记录通过乘以一系列 比例系数,调幅成一组具有不同强度的地震动作 用,分别施加于结构上进行动力时程分析.通过选 取适当的地震动强度参数(intensity measure, IM) 和结构性能参数(engineering demand parameters, EDP),绘制 IDA 曲线.常用的 IM 指标有峰值位 移、峰值速度、峰值加速度、加速度反应谱等,常 用的 EDP 指标有结构顶点位移、最大基底剪力、 最大层间位移角、楼层最大延性等^[12].该方法已被 广泛应用于结构抗震性能的评估中^[13].

基于IDA方法的高层结构抗震性能分析步骤:

步骤1 选取适当的有限元软件,建立可靠的 结构非线性分析模型;

步骤2 选取适当的 IM 和 EDP 指标,并依据 一定筛选原则,选取一系列符合结构场地条件的 地震动记录进行分析. 文献[14]指出, 10~20 条地 震动记录足以对结构抗震性能做出精确评估;

步骤3 针对每条记录进行地震动强度单调 调幅,计算该输入下结构的动力反应.将得到的第 1个EDP-IM性能点记为Δ₁,其与原点连线的斜率 记为*K*_e;继续计算下一个调幅地震动记录下结构 的动力反应,得到第2个性能点并记作Δ₂.若该点 与前一性能点连线斜率大于0.2*K*_e,则继续计算下 一调幅地震动记录下的结构性能点,直至Δ_i与Δ_{i-1} 连线斜率小于0.2*K*_e.如果Δ_i≥0.1,则认为EDP限 值为0.1;

步骤4 变换原始地震动记录,重复步骤3,得 到结构的IDA计算结果曲线簇;

步骤5 对IDA曲线簇进行概率统计分析,利 用计算数据结果对结构抗震性能进行评估.

2 高层结构振动测试

基于广西来宾高层建筑随机振动测试项目, 湖南大学土木工程结构健康监测研究团队(www. hnutest.com)从 200 多栋新建高层建筑中选取了 10栋高度100 m左右的钢筋混凝土结构进行随机 振动测试,通过采用工作模态分析等相关技术,对 其模态参数进行识别.待测对象均为施工完成但 尚未交付使用的民用住宅楼,无家具等设备,因此 不考虑活荷载对结构质量的影响.每栋高层建筑 均配有中央核心电梯筒,基础类别为人工挖孔桩, 抗震设防烈度为6度,设计基本地震加速度为 0.05g,地震设计分组为第1组, II类场地.本研究 选取了一栋高层剪力墙结构进行分析,结构信息 及测试情况见图1.

图 1 测试高层及平面布置图 Fig. 1 Instrumentation layout for the tested structure

实际建筑结构在环境激励下的响应十分复 杂151. 为减少因认知不确定性而造成的模态缺失 或虚假模态,通过采用随机子空间法(stochastic subspace identification, SSI)和复模态指示函数法 (complex mode indicator function, CMIF)进行模态 参数识别,其中CMIF法采取互相关函数法(cross correlation, CC)进行前处理,使用上述方法对模态 参数识别结果进行相互验证及补充,从而获得更 加完备的结构动力特性(见表1). 通过对比发现该 高层结构周期实测值与设计值的比值在 0.35~ 0.44, 与高层结构设计规程(JGJ 3-2010)¹⁹建议的高 层剪力墙结构周期折减系数取值0.8~1.0有一定 差距,通常认为是填充墙这类非结构构件所导致 的. 拟建立考虑填充墙刚度影响的建筑结构有限 元模型,讨论潜在危险性水平地震作用下填充墙 对结构抗震性能的影响.

表 1 测试高层前三阶周期识别结果 Table 1 Results of the first three order periods for

tne	S			
测试高层	模态计算	1st	2nd	3rd
	SSI	1.433	1.572	1.600
金穗小区3#	CC+CMIF	1.294	-	-
	设计值	3.707	3.620	3.167

3 有限元模型建立及修正

3.1 有限元模型建立

在进行IDA分析时需对有限元模型进行多次 弹塑性时程计算,准确的弹塑性分析是保证计算 结果合理性的关键所在. Perform-3D已被广泛应 用于高层结构的非线性问题分析:张令心等四对 某50层超高层混合结构进行了基于IDA方法的 地震易损性分析; 杜永峰等100对某平面不规则框 架-剪力墙结构进行了基于性能的地震易损性分 析; Sarkisian 等^[17]对某 30 层混凝土核心筒高层结 构进行了非线性时程计算; Poon 等118将其应用于 高度为632m的上海中心大厦的非线性抗震问 题研究中,因此本研究选用Perform-3D软件对结 构进行非线性分析.在PKPM中对高层建筑进行 建模和计算后,通过吴晓涵¹⁹研发的NosaCAD 将模型导入至Perform-3D中进行完善和处理,其 中NosaCAD在转换过程可自动生成Perform-3D 中弯矩-曲率模型和纤维模型所需的大部分参 数.荷载工况采用SATWE导荷结果,结构质量根 据抗震分析要求的质量模式进行转化.为提高计 算效率,假定楼板无限刚性,在Perform-3D中建立 了两种弹塑性分析模型:模型1(Model1)采用设计 模型对填充墙的考虑方式,即未直接对填充墙进 行建模,而是将填充墙质量转化为恒载并施加于 结构上,不考虑填充墙刚度,周期折减采用国家规 范建议值;模型2(Model2)考虑填充墙质量,采用 单杆斜撑模型对填充墙刚度进行考虑,不考虑周 期折减.利用现场实测结构模态信息对有限元模 型进行了参数修正.

现行填充墙计算模型可分为宏观模型和微观 模型^[20].其中宏观模型依据以往地震作用下填充 墙的行为响应,对实际结构构件进行了简化处理. 微观模型则是将墙体划分为许多细小单元,以研 究局部位置的应力-应变关系.Holmes^[21]提出将 填充墙简化为等效铰接斜撑,其厚度与实际填充 墙一致,宽度定义为斜撑长度的1/3;Thiruvengadam^[22]针对开洞填充墙,提出可将单杆斜撑改进为 多重压杆模型;Crisafulli^[23]将多重压杆等效斜撑模 型与相应的精确有限元分析结果进行了对比;Crisafulli等^[24]提出一种利用四节点平板连接框架梁-柱节点的宏观模型,较好地解释了填充墙的抗压 和抗剪行为.在实际工程应用及结构分析中,单杆 斜撑模型凭借准确的模拟及良好的计算效率得到 了广泛应用.因此本研究选取该模型对填充墙进 行模拟计算.

3.2 有限元模型校验

PKPM软件的模型计算结果与结构真实状态存在一定差异.Perform-3D致力于结构的非线性动力分析及抗震性能评估,且对填充墙等非结构构件拥有较为完善的建模模块.本研究利用Perform-3D建立结构模型并进行潜在危险性水平地震作用下的IDA分析.为保证Perform-3D分析模型的计算结果与PKPM设计模型具有可比性,在保证构件材料类型、截面尺寸等参数一致的前提下,在Perform-3D中对填充墙构件采取与PK-PM相同的处理方式,即仅考虑由填充墙质量引起的荷载效应,以周期折减系数考虑由填充墙刚度对整体结构造成的影响.

由于现行抗震计算方法与结构前若干阶模态 直接相关,为验证所建立的非线性模型的正确性, 对两类模型的计算周期进行了对比(图2).可见二 者前12阶周期的平均误差在5%,证明了由Perform-3D建立的非线性模型的可靠性.

图 2 PKPM 设计模型与 Perform-3D 初始模型计算周期 对比

Fig. 2 Comparison of modal periods between the PKPM design model and the initial Perform-3D analytical model

3.3 有限元模型修正

在 Perform-3D 模型中,梁柱构件采用塑性区 模型,即由中部弹性区段和端部弹塑性区段构成. 墙体采用软件自带的通用墙单元,连梁单元则通 过在普通梁单元基础上添加剪切铰来考虑剪切刚 度产生的非线性影响.

采用Holmes^[21]提出的等效斜撑模型对填充墙 进行有限元模拟.其中斜撑厚度与实际墙体相同, 宽度取为墙体对角线长度的1/3.由于建筑结构不 同位置处的填充墙厚度有所差异(如房屋外墙厚 度 240 mm, 卫生间内隔墙厚度 120 mm), 为简化建 模过程,将斜撑模型的厚度统一取为180mm.填充 墙质量模拟采用PKPM处理方式将墙体质量转化 为恒载并施加于结构上,设置斜撑材料密度为0. 测试高层中的填充墙由MU10页岩多孔砖拌和M5 水泥砂浆砌筑而成,砌体抗压强度标准值为2.4 MPa, 泊松比0.2, 轴心抗压强度标准值按插值法 取为4.8 MPa. 测得的填充墙砌体弹性模量通常离 散性较大,依据国家规范建议的混凝土弹性模量 插值法将填充墙弹性模量初定为1.85×10⁴N/mm². 针对每根单杆斜撑模型,指定如图3所示的荷载-位移关系,能够较好地表达填充墙非线性行为所 需的必要特性参数,如初始刚度、峰值强度及峰后 强度等,同时相较其他模型提高了计算效率.结构 整体模型采用5%的模态阻尼和0.2%的瑞利阻尼.

在对初始模型进行模态分析后,采用正问题 试算方法调整填充墙弹性模量,利用最小二乘法 寻找与前12阶实测周期最匹配的计算周期(图4). 该高层建筑最匹配的填充墙弹性模量取为1.45× 10⁴N/mm²,与规范建议值相比在合理范围之内.

Fig. 3 Load-displacement relationship of the diagonal strut model

Fig. 4 Adjustment for the elasticity modulus of infilled wall

在得到合适的弹性模量后可计算得到填充墙 的骨架曲线,其中最重要的参数为填充墙的峰值 应力*F*_{max},主要由填充墙的尺寸及砌体的开裂应力 *f*₁⁰决定^[25].针对本项目,可求得*f*₁⁰的合理范围为 0.13~0.27 MPa.填充墙的骨架曲线需满足^[25]:开裂 强度取 0.55 倍峰值强度,即*F*_{cr}=0.55*F*_{max};峰值强度 对应的峰值应变δ_{cep}取为 0.25%倍的层间位移角; 刚度退化系数α,取为 0.05.确定满足以上条件的*f*₁⁰ 即可得到填充墙的整条骨架曲线,其中不同弹性 模量对应的填充墙骨架曲线见图 5.可见当弹性模 量取 16%~20%时,会造成骨架曲线初始刚度发生 15%~35%增减,并随后影响整条骨架曲线.

图 5 不问填尤项押性候重对应有构有采曲线对比 Fig. 5 Adjustment for the skeleton curve of infilled wall

4 基于IDA的抗震性能评估

4.1 地震动选取

不同地震动记录输入下的结构响应往往离散 性较大.为获取具有相同特征的地震动记录,根据 现行中国建筑抗震设计规范¹⁰¹要求,以与建筑结构 震害破坏密切相关的地震动3要素(频谱特性、有 效峰值和持续时间)为依据,在太平洋地震工程研 究中心(http://ngawest2.berkeley.edu)进行地震波初 选;参考杨傅等¹²⁶¹提出的双频段控制选波方法与 设计反应谱进行匹配,再输入至PKPM模型中进 行批量计算,选取基底剪力满足规范要求的地震 动记录^[27].本研究最终选取15条地震动记录(表2) 进行 IDA 计算,相应的设计反应谱与加速度反应 谱见图 6.

4.2 IDA计算结果

将挑选出的地震波依次沿 x 方向输入至 Perform-3D模型中进行 IDA 计算.针对输入的每 条地震动记录,采用变步长法计算,以 0.10 g 作为 初始调幅步长, 0.05 g 作为步长增量,依次进行动

编号	地震动序号	地震名称	年份	震级	D_{5-95}	$V_{30}/(m/s)$	$PGA/(cm/s^2)$
1	RSN66	San Fernando	1971	6.61	23.9	328.09	41.258
2	RSN78	San Fernando	1971	6.61	18.9	452.86	147.911
3	RSN88	San Fernando	1971	6.61	23.6	389.00	151.773
4	RSN140	Tabas_Iran	1978	7.35	24.2	302.64	102.753
5	RSN289	Irpinia_Italy-01	1980	6.90	24.2	455.93	123.901
6	RSN294	Irpinia_Italy-01	1980	6.90	22.9	496.46	34.859
7	RSN300	Irpinia_Italy-02	1980	6.20	20.0	455.93	172.274
8	RSN304	Irpinia_Italy-02	1980	6.20	22.1	496.46	20.790
9	RSN392	Coalinga-03	1983	5.38	16.1	286.41	48.677
10	RSN522	N. Palm Springs	1986	6.06	18.5	307.54	46.849
11	RSN535	N. Palm Springs	1986	6.06	21.6	330.74	68.100
12	RSN906	Big Bear-01	1992	6.46	21.5	328.09	79.066
13	RSN921	Big Bear-01	1992	6.46	23.2	312.47	76.710
14	RSN937	Big Bear-01	1992	6.46	22.4	416.15	36.113
15	RSN1046	Northridge-01	1994	6.69	22.0	339.60	59.510

	表2 IDA分析选取地震动记录基本信息
Table 2	Information of the selected seismic records for the IDA analysis

Fig. 6 Response spectrums of the selected and target ground motion

力时程分析,直至满足分析终止条件.变换地震动记录,获得相应的IDA计算结果曲线簇.对比分析 Model1 和 Model2 中最大层间位移角、最大基底剪力和顶层位移,对结构的抗震性能进行评估.

4.2.1 最大层间位移角

建筑结构的层间位移角与结构节点转动及层间变形能力直接相关.通过选取结构基本周期对应的加速度反应谱 $S_a(T_1, 5\%)$ 作为 IM 参数,选取楼层最大层间位移角 θ_{max} 作为 EDP 参数,对 Model1、2 中最大层间位移角进行研究(图7).

考虑到 IDA 计算结果具有一定离散性, 需对 相应性能曲线簇进行统计分析. 假定其均服从对 数正态分布, 按照 IM 统计方式得到(µ_{EDP}e^{-a}_{MEDP}, IM), (µ_{EDP}, IM)和(µ_{EDP}e^{+a}_{MEDP}, IM)性能点, 并绘制相应的 16%, 50%和 84%分位曲线, 以标准差对数形式表 示结构反应的离散程度(见图 8).

图 7 模型 1、2 最大层间位移角 IDA 计算结果 Fig. 7 IDA calculation results of the maximum inter-story drift ratio of Model1 and 2

由图 8 可知, Model1、2 在 x 方向上的层间位 移角变化趋势基本相同. Model1 在线性阶段的结 构初始刚度明显小于 Model2;随着地震动强度的 逐步增加, Model1 中结构整体刚度下降速率比 Model2快.

图 8 最大层间位移角 IDA 分位曲线 Fig. 8 IDA partition curves of the maximum inter-story drift ratio

计算结果表明, Model1 中均值曲线约为 Model2 的 1.11 倍, 16% 分位曲线约为 1.23 倍, 84% 分位曲线约为 1.07 倍. 当 *S*_a(*T*₁, 5%)为 1.755 *g* 时, Model1、2 中均值曲线最大差值为 0.045 rad, 16% 分位曲线最大差值为 0.078 rad; 当 *S*_a(*T*₁, 5%)达到 5.205 *g* 时, 84% 分位曲线最大差值为 0.049 rad.

基于性能的抗震设计通过设计多层次的抗震 目标,保证不同风险地震动作用下的结构安全及个 性化需求,关键在于对结构性能进行正确分析与评 价,据此来检查结构设计的合理性,以及是否需要 进一步优化.本研究依据吕西林等^[14]定义的结构 在处于正常使用、基本可使用、修复后可使用、生 命安全和接近倒塌5种不同破坏状态下的层间位 移角限值,对结构抗震性能水平进行量化(图9).

地震作用下 Model1 的最大层间位移角曲线 始终处于 Model2 的包络线之中, 表明规范建议的 周期折减系数值偏于保守. 在抗震设计阶段, 若对 结构基本周期进行进一步折减, 其计算结果也偏于 安全, 尤其是在结构处于生命安全极限状态之前. 4.2.2 最大基底剪力

变更结构最大基底剪力 Vbase 作为 EDP 参数,

Model1、2在x方向水平地震作用下的最大基底剪 力如图10所示.统计两种情况下的16%,50%和 84%分位曲线(图11).

对比 Model1、2的3类分位曲线发现,在相同 地震动强度作用下, Model2中结构最大基底剪力 更大,表明实际情况下填充墙有效增加了结构整 体刚度.当地震动强度增大至约6g时, Model2中 结构性能曲线相较 Model1仍在发散,表明该地震

图 11 最大基底剪力 IDA 分位曲线对比 Fig. 11 IDA partition curves of the maximum base shear force

动强度作用下实际结构仍具有一定承载力.

Model2 中均值曲线约为 Model1 的 1.96 倍, 16%分位曲线约为2.27倍,84%分位曲线约为1.74 倍. Model1 中均值曲线较 Model2 平均相差 2.42× 10⁴ kN, 16% 均值曲线平均相差 3.32×10⁴ kN, 84% 分位曲线平均相差 1.71×10⁴ kN. 当 S_a(T₁, 5%)为 5.205 g时, Model1、2均值曲线最大差值为3.51× 10⁴ kN, 16% 分位曲线最大差值为 5.29×10⁴ kN, 84%分位曲线最大差值为2.07×104kN. Model2中 底层填充墙构件承担的有效峰值剪力均值约为 Model1、2中最大基底剪力增加量的139.87%.由 于主体结构的内力水平大致与结构整体变形呈正 相关,考虑了填充墙刚度影响的Model2最大层间 位移角、顶层位移均有明显减小,表明实际结构中 填充墙有效分担了主体结构中的地震作用.在地 震作用下将先于梁、柱、剪力墙等结构构件成为 第1道防线,提高整体结构抗力.

4.2.3 顶层位移

图 12为 Model1、2中以结构顶层位移 U_{roof}作为 EDP 参数的 IDA 曲线簇, 其相应的分位曲线簇 见图 13.

图12 顶层位移IDA计算结果

Fig. 12 IDA calculation results of the roof displacement

根据计算结果知,两类模型性能曲线的变化 趋势基本相同.其中Model1均值曲线约为Model2 的1.23倍,16%分位曲线约为1.10倍,84%分位曲 线约为1.35倍.当 $S_a(T_1,5\%)$ 为1.755g时,Model1、2均值曲线最大差值为324mm;当 $S_a(T_1,5\%)$ 为3.855g时,16%分位曲线最大差值为218mm; 当 $S_a(T_1,5\%)$ 为1.355g时,84%分位曲线最大差值 为255mm.现行规范建议的周期折减系数在结构 水平位移计算上也是偏于保守的.

5 结论

基于广西来宾高层建筑随机振动测试项目, 在Perform-3D中对一栋高层剪力墙结构建立了两 种有限元模型,并分别与PKPM设计模型进行了 模态周期对比.利用现场实测信息对有限元模型 进行参数修正,利用校验后的模型进行IDA分析, 讨论了潜在危险性水平地震作用下填充墙对高层 结构抗震性能的影响.

对一栋高层钢筋混凝土剪力墙结构进行了现 场环境振动测试,测试识别的结构模态信息与PK-PM设计模型相比存在一定差异,通常认为是现行 结构设计国家规范中对填充墙的考虑和计算方式 所导致的.针对被测高层建筑,在Perform-3D中建 立了相应的有限元分析模型,其中针对填充墙等 非结构构件采用与PKPM结构设计时相同的方 式.对比发现两类模型的模态周期基本吻合,验证 了Perform-3D中所建立模型的可靠性.

在 Perform-3D 中所建高层结构模型的基础 上,通过添加斜撑单元对填充墙进行模拟,利用现 场实测获得的结构模态信息对有限元模型进行参 数修正.对比发现校验后的结构模型更符合实际 情况.针对考虑和未考虑填充墙刚度影响的结构 模型分别进行了 IDA 分析,发现填充墙在线性阶 段有效增加了结构的整体初始刚度,在地震作用 下将先于梁、柱、剪力墙等结构构件成为第1道防 线;随着地震动强度的逐级增加,填充墙破坏程度 也随之加大,逐步丧失对结构刚度的贡献.

从最大层间位移角、最大基底剪力、顶层位 移3方面对考虑和未考虑填充墙刚度影响的结构 模型抗震性能进行了对比评估,发现未考虑填充 墙作用的模型最大层间位移角、顶层位移均大于 考虑填充墙作用的结构模型,最大基底剪力却相 对较小.该结果表明国家现行设计规范建议的周 期折减系数取值偏大,导致对实际的结构基底剪 力估计不足,而对层间位移角及水平位移的计算 却相对保守.通过采用基于最大层间位移角的结 构性能评价指标对结构破坏状态进行了量化.结 果表明,在抗震设计过程中若对结构基本周期进 行足够折减,其计算结果也偏于安全,尤其是在结 构处于生命安全极限状态之前.

参考文献

- Brownjohn J M W, Ang C K. Full-scale dynamic response of high-rise building to lateral loading[J]. Journal of Performance of Constructed Facilities. 1998, 12(1): 33-40.
- [2] Li Q S, Fang J Q, Jeary A P, et al. Evaluation of wind effects on a supertall building based on full-scale measurements[J]. Earthquake Engineering & Structural Dynamics, 2015, 29(12): 1845-1862.
- [3] Xu Y L, Chen S W, Zhang R C. Modal identification of Di Wang Building under Typhoon York using the Hilbert-Huang transform method[J]. Structural Design of Tall & Special Buildings, 2003, 12(1): 21-47.
- [4] Li Q S, Fu J Y, Xiao Y Q, et al. Wind tunnel and fullscale study of wind effects on China's tallest building[J]. Engineering Structures, 2006, 28(12): 1745-1758.
- [5] 易伟建,周云,覃廖辉.大底盘双塔楼高层建筑的随机振动测试及模型修正研究[J]. 土木工程学报, 2009, 42(2): 65-72.
- [6] Li Q S, Zhi L H, Tuan A Y, et al. Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis[J]. Journal of Structural Engineering, 2011, 137(1): 143-155.
- [7] Liu T, Yang B, Zhang Q L. Health monitoring system developed for Tianjin 117 high-rise building[J]. Journal of Aerospace Engineering, 2016, 30(2): B4016004.1-B4016004.7.
- [8] Zhou Yun, Zhou Yi, Yi Wei-jian, et al. Operational modal analysis and rational finite-element model selection for ten high-rise buildings based on on-site ambient vibration measurements[J]. Journal of Performance of Constructed Facilities, 2017, 31(5): 4017043-4017051.
- [9] GB50011-2010. 建筑抗震设计规范[S]. 北京: 中国建筑 工业出版社, 2010: 31-37.
- [10] 谭德先,周云,米斯特,等.环境激励下高层建筑结构 模态测试与有限元建模分析[J].土木工程学报,2015, 48(9):41-50.
- [11] 周颖, 吕西林, 卜一. 增量动力分析法在高层混合结构 性能评估中的应用[J]. 同济大学学报: 自然科学版, 2010, 38(2): 183-187.
- [12] 张令心, 徐梓洋, 刘洁平. 基于增量动力分析的超高层

混合结构地震易损性分析[J]. 建筑结构学报, 2016, 37(9): 19-25.

- [13] vam Vatsikos D. Seismic performance uncertainty estimation via IDA with progressive accelerogram-wise Latin Hypercube Sampling[J]. Journal of Structural Engineering, 2014, 140(8): 657-670.
- [14] 吕西林, 苏宁粉, 周颖. 复杂高层结构基于增量动力分析法的地震易损性分析[J]. 地震工程与工程振动, 2012, 32(5): 19-25.
- [15] 李宁洲, 卫晓娟, 丁旺才, 等. 车轮转速信号混合噪声的非线性 Volterra 滤波方法[J]. 兰州大学学报: 自然科学版, 2017, 53(2): 279-284.
- [16] 黄小宁, 杜永峰, 李慧. 基于性能的平面不规则结构地 震易损性分析[J]. 中南大学学报: 自然科学版, 2017, 48(6): 1645-1650.
- [17] Sarkisian M, Long E, Hassan W. Performance-based engineering of core wall tall buildings[J]. Structures Congress, 2013, 30(4): 1094-1108.
- [18] Poon C K, Hsiao L E, Zhu B, et al. Non-linear time history analysis for the performance based design of Shanghai Tower[J]. Structures Congress, 2011, 28(1): 541-551.
- [19] 吴晓涵, 孙方涛, 吕西林. 上海世博会中国馆结构弹塑 性时程分析 [J]. 建筑结构学报, 2009, 30(5): 112-118.
- [20] Asteris P G, Cotsovos D M, Chrysostomou C Z, et al. Mathematical micromodeling of infilled frames: state of

the art[J]. Engineering Structures, 2013, 56(12): 1905-1921.

- [21] Holmes M. Steel frames with brickwork and concrete infilling[J]. Proceedings of the Institute of Civil Engineering, 1961, 19(4): 473-478.
- [22] Thiruvengadam V. On the natural frequencies of infilled frames[J]. Earthquake Engineering & Structural Dynamics, 1985, 13(3): 401-419.
- [23] Crisafulli F J. Seismic behaviour of reinforced concrete structures with masonry infills[D]. Cantebury: Department of Civil Engineering, University of Cantebury, 1997.
- [24] Crisafulli F J, Carr A J. Proposed macro-model for the analysis of infilled frame structures[J]. Bulletin of the New Zealand Society for Earthquake Engineering, 2007, 40(2): 69-77.
- [25] Dolsek M, Fajfar P. The effect of masonry infills on the seismic response of a four-storey reinforced concrete frame-a deterministic assessment[J]. Engineering Structures, 2008, 30(7): 1991-2001.
- [26] 杨溥, 李英民, 赖明. 结构时程分析法输入地震波的选择控制指标 [J]. 土木工程学报, 2000, 33(6): 33-37.
- [27] 李宇, 吴桂楠, 李琛, 等. 长周期地震动弹塑性反应 谱的参数影响[J]. 兰州大学学报: 自然科学版, 2018, 54(1): 90-97.

(责任编辑:张 勇)