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Abstract: As a type of nonstructural component, infi ll walls play a signifi cant role in the seismic behavior of high-rise 
buildings. However, the stiff ness of the infi ll wall is generally either ignored or considered by simplifi ed empirical criteria 
that lead to a period shortening. The diff erence can be greatly decreased by using a structural identifi cation methodology. In 
this study, an ambient vibration test was performed on four on-site reinforced concrete high-rise buildings, and the design 
results were compared with the PKPM models using corresponding fi nite element (FE) models. A diagonal strut model was 
used to simulate the behavior of the infi ll wall, and the identifi ed modal parameters measured from the on-site test were 
employed to calibrate the parameters of the diagonal strut in the FE models. The SAP2000 models with calibrated elastic 
modulus were used to evaluate the seismic response in the elastic state. Based on the load-displacement relationship of the 
infi ll wall, nonlinear dynamic analysis models were built in PERFORM-3D and calibrated using the measured modal periods. 
The analysis results revealed that the structural performance under small/large earthquake records were both strengthened by 
infi ll walls, and the contribution of infi ll walls should be considered for better accuracy in the design process.
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 1   Introduction

Due to widely used lightweight materials, high-
rise buildings have become more fl exible and thus 
more sensitive to external excitations. As a type of 
horizontal load, seismic action is critical to high-
rise building design. The seismic response is aff ected 
by nonstructural components including infi ll walls, 
which has been concluded from previous substantial 
earthquake disasters. The use of masonry infi ll walls 
signifi cantly increases the initial stiff ness of building 
structures, but abrupt stiff ness degradation occurs after 

the infi ll walls are damaged (Chaulagain et al., 2016; 
Dhakal et al., 2016). Furthermore, the irregular and 
unreasonable arrangement of the infi ll wall may also 
induce an adverse eff ect on the structural responses 
(e.g., torsion eff ect, short-column eff ect, and weak layer 
failure). However, the contribution of the infi ll wall to 
the stiff ness is generally ignored in the seismic design 
of building structures (Sanada and Konishi, 2011). To 
consider the structural performance infl uenced by the 
stiff ness of the infi ll wall, a natural period reduction 
factor is recommended in current design codes (Kaushik 
et al., 2012). Chinese design code JGJ 3-2010 (2010) 
specifi es the factor of 0.7 to 1.0, and the Canadian design 
code (NRCC, 2005) specifi es 0.8. Moreover, a series 
of specifi c formulas is utilized to estimate the natural 
period of reinforced concrete (RC) frames with infi ll 
walls (Zhou et al., 2017).

The installation of infi ll walls decreases the natural 
period of structures, which can be measured from an 
on-site ambient vibration test (Li and Wu, 2004). The 
ambient vibration test in high-rise buildings exhibits a 
large diff erence of the fundamental frequency between the 
predictions and actual measured records due to improper 
modeling approaches of nonstructural components (Li 
et al., 2004, 2010). The seismic capacity of high-rise 
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buildings is aff ected by the dynamic characteristics 
related to the mass and stiff ness distributions. Thus, the 
mass and stiff ness of the infi ll walls should be considered 
in the evaluation of the seismic capacity.

The structural identifi cation (St-Id) method, proposed 
by Liu and Yao (1978), is a systematic approach for 
characterizing the structural behavior of an unknown 
system on the basis of the input and output test data. St-
Id was summarized as a six-step analysis-test-decision 
integration cycle by ASCE St-Id of Constructed Systems 
Committee as follows (ASCE, 2011): (1) Objectives, 
observation, and conceptualization; (2) A priori fi nite 
element (FE) modeling; (3) Uncontrolled and controlled 
tests; (4) Processing, validation, and interpretation of 
data; (5) Model calibration and parameter identifi cation; 
and (6) Utilization of the calibrated model for simulation 
and decision-making. Over the last few decades, the state 
of the art in St-Id of constructed systems has advanced 
signifi cantly, and dozens of successful applications for 
structural systems have been documented (Catbas et al., 
2013).

The identifi ed dynamic characteristics obtained from 
an on-site test can be employed to update the related 
parameters of the FE model (Brownjohn, 2003). The 
measurement of the structural dynamic response from 
ambient vibration tests, such as microtremors, wind 
vibration, and traffi  c vibration, is increasingly important 
to obtain the fundamental period of high-rise buildings. 
Based on the on-site test record, the FE model can 
be calibrated to minimize the diff erence between the 
predictions and measured dynamic characteristics, and 
the calibrated FE model is applicable to structural analysis 
(Xu et al., 2003). Other applications mainly include 
structural health monitoring, seismic vulnerability 
evaluation, and vibration control (Brownjohn and Pan, 
2008).

Uncertainty in the modeling of infi ll walls was 
introduced in an a priori FE model of high-rise buildings, 
which was generally utilized to estimate modal 
information before implementing the ambient excitation 
test for an actual structure. The current computational 
models to simulate the mechanical behavior of the 
infi ll wall are broadly divided into FE micro-model 
and macro-model. In the micro-model, the infi ll wall 
is considered as a continuous element addressing 
local details, and the material properties of the mortar, 
brick, and other constituent elements can be built. The 
FE micro-model is generally regarded as the most 
precise analysis method for infi ll wall modeling (Hans 
et al., 2010), although considerable calculation time is 
required (Asteris et al., 2013). The macro-model can be 
developed based on the observed seismic behavior and 
test results (Asteris et al., 2011). According to Polyakov 
(1960), an infi ll wall can be converted into a diagonal 
strut within its panel. Holmes (1961) further improved a 
simplifi ed model with an equivalent pin-jointed diagonal 
strut. Smith (1962) presented a mathematical equation 
to estimate the equivalent width of the diagonal strut. 

Mainstone (1971) proposed an empirical equation for 
the equivalent strut width based on test results, which 
was simultaneously included in FEMA-274 (1997) 
and FEMA-306 (1999) guidelines and has been widely 
used in the analysis of RC frames with infi ll walls 
(Fardis and Panagiotakos, 1997; Negro and Colombo, 
1997; Balendra and Huang, 2003). Eurocode 8 (2004) 
prescribes the detailed arrangement of the infi ll wall at 
the fi rst story, but the calculation procedure is relatively 
complicated in the design procedure.

Based on Chinese seismic design code GB 50011-
2010 (2010), mode-superposition response spectrum 
analysis and linear dynamic analysis are applied to 
the structural analysis under small earthquakes. Under 
large earthquakes, the pushover analysis method and 
nonlinear dynamic analysis are used to consider plastic 
behavior. A similar analytical procedure is adopted in 
Eurocode 8 (2004) and American design codes (ASCE, 
2006), although these codes diff er in the selection of the 
site category, seismic grouping, and structural vibration 
period.

The dynamic characteristics of the RC frame 
structures with infi ll walls have also been widely 
discussed. Henderson et al. (2003) demonstrated that 
an actual masonry infi ll wall can resist lateral load more 
eff ectively than suggested by the design code procedures. 
Su et al. (2005) indicated that nonstructural components 
signifi cantly increase the global lateral stiff ness of 
structures. Hashmi and Madan (2008) reported that 
an infi ll wall decreases the lateral deformation and 
damage of frame structures. According to Kose and 
Karslioglu (2010), the use of infi ll walls decreases the 
fi rst mode period of structures and increases the spectral 
acceleration coeffi  cient in response analysis. Zhang et al. 
(2011) performed numerical analysis to investigate the 
eff ect of infi ll walls on the failure pattern of RC frames, 
and reported that the infi ll eff ect needs to be considered 
in structural design. Nautiyal et al. (2013) found that 
the base shear of a four-story frame is increased by an 
infi ll wall in the equivalent diagonal strut method. Su 
and Lee (2013) proposed a coeffi  cient-based method 
for the seismic fragility analysis and ultimate spectral 
displacement assessment of RC buildings using infi ll 
walls, which is applicable to both the performance 
evaluation of existing buildings and conceptual design of 
new buildings. Nwofor and Chinwah (2014) discovered 
that the shear strength of a building structure with 
infi ll walls decreases with an increase of the opening 
ratio of the infi ll walls. Luis et al. (2014) reported 
that the openings at the corner of infi ll walls decrease 
the strength and stiff ness of the infi lled frames, which 
should not be used in high-seismicity regions. Ashok 
et al. (2015) observed that an infi ll wall increases the 
seismic resistance of frame structures. Al-Nimry et al. 
(2015) conducted nonlinear static analysis of 112 low-
rise and medium-rise buildings with infi ll walls, and 
found that approximately 40% of the existing buildings 
require detailed analysis to better evaluate their seismic 
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vulnerabilities. Milheiro et al. (2016) recommended that 
nonlinear analysis be performed to consider the infi ll 
wall contribution to the design of new buildings and 
the evaluation of the seismic performance of existing 
buildings. Abhijeet and Vaibhav (2017) observed that the 
maximum defl ection and story drift ratio are restricted 
in high-rise buildings with infi ll walls and outrigger 
systems. 

The core ideology of the St-Id approach lies in the 
estimation of the structural response performed by the 
calibrated FE model. The discrepancy between the 
seismic analysis result of high-rise buildings and actual 
structural behavior is mainly caused by the uncertainty 
of the modeling process (particularly, the eff ect of 
nonstructural components, such as infi ll walls, is 
neglected). Although the uncalibrated FE model without 
consideration of infi ll walls is generally used in seismic 
analysis, the diff erence in seismic performance between 
the uncalibrated and calibrated FE model has seldom 
been studied. In the present study, the FE model was 
calibrated by using the actual period measured from the 
ambient vibration test, and  the structural performance 
was evaluated by the calibrated FE models. The mode-
superposition response spectrum analysis method and 
nonlinear dynamic analysis method were adopted to 
evaluate the elastic behavior under small earthquakes and 
plastic behavior under large earthquakes, respectively. 
Figure 1 shows the detailed procedure. The eff ect of an 
infi ll wall on the seismic performance of structures was 
discussed, and the seismic analysis results calculated 
by the calibrated model and uncalibrated model were 
carefully compared.

2   On-site tests of Laibin high-rise buildings

Target buildings were tested in downtown Laibin 

in Guangxi, China. Ten residential RC buildings with 
heights of approximately 100 meters were carefully 
selected from more than 200 high-rise buildings. The 
infi ll wall of the structures was built by brick masonry 
and cement mortar. To achieve a convenient and scientifi c 
comparison, four representative high-rise buildings 
(BAYG 2#, JSXQ 3#, XYY A#, and SHHM 2#) were 
selected from each residential region for dynamic 
testing. The heights of BAYG 2#, JSXQ 3#, XYY A#, 
and SHHM 2# were 87.0 m with 26 stories, 122.7 m 
with 39 stories, 86.1 m with 24 stories, and 107.4 m with 
33 stories, respectively. Figure 2 shows the building 
information and instrumentation layout. BAYG 2# is a 
frame-shear wall structure, and the other three buildings 
are shear wall structures. Twelve kinds of beam sections 
(section range 150 mm × 300 mm‒300 mm × 800 mm) 
were used, and the majority of the column section was 
about 500 mm × 500 mm (section range 350 mm × 
400 mm‒700mm × 700 mm). In BAYG 2#, JSXQ 3#, 
XYY A#, and SHHM 2#, the total number of infi ll wall 
panels was 86, 104, 118, and 76 in each story, and the 
thickness of the infi ll wall was 220 mm, 180 mm, 
270 mm, and 300 mm, respectively. The thickness of 
the RC walls was 240 mm‒500 mm. The infi ll wall was 
constructed by MU10 porous shale bricks combined 
with M5 cement mortar, and the corresponding masonry 
compressive strength was 2.4 MPa and Poisson’s ratio 
was 0.2. The tested structures were built at the same 
construction site where the soil type was limestone with 
plain fi lls, and supported by piles with man-excavated 
shaft. The fi eld category was classifi ed as class 2, and the 
seismic intensity was classifi ed as degree 6 according to 
Chinese design code GB 50011-2010. Other detailed test 
information can be found in the study of Zhou et al. (2017).

In this  study, the stochastic subspace identifi cation 
method (SSI) was used to analyze the signals measured 
from the ambient vibration test (Peeters, 2000). For 

Fig. 1  Flowchart of two-stage seismic analysis for high-rise buildings
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structural design, PKPM software only considers the 
equivalent mass of infi ll walls, while the corresponding 
stiff ness is ignored. Table 1 compares the fi rst three 
periods calculated by the SATWE module in PKPM with 
the measurements to identify the diff erences. The ratio 
of the measured period to prediction ranged from 0.339 
to 0.450 when the period reduction coeffi  cients specifi ed 
in Chinese design code JGJ 3-2010 were used (i.e., 0.7 
to 0.8 for frame-shear wall structures, and 0.8 to 1.0 for 
shear wall structures). Figure 3 compares the calculated 
mode shapes with the measurements in building JSXQ 
3#, demonstrating similar behavior.

3  Elastic FE model for response spectrum 
      analysis

To evaluate the linear dynamic behavior of a high-

rise building, the mode-superposition response spectrum 
method was used according to Chinese seismic design 
code GB 50011-2010 (2010). The accuracy of the FE 
model analysis for high-rise buildings is aff ected by 
the modeling behavior of the structural components 
including the slab and shear wall. In the SATWE module 
of PKPM software, a one-dimensional element was 
adopted to simulate the structural performance of the 
column, beam, and diagonal strut (Tan et al., 2015). The 
shear wall was simulated by the general shell element, 
and the slab could be assumed to have infi nite stiff ness 
or simulated by elastic theory. As general FE analysis 
software, SAP2000 employs frame elements to describe 
the behavior of the beam and column, and the shell 
element with membrane characteristics was adopted for 
the slab and shear wall in three-dimensional structures 
(Mwafy et al., 2006).

(a) (b)

(c) (d)
Fig. 2   Floor plan of four high-rise buildings: (a) BAYG 2#; (b) JSXQ 3#; (c) XYY A#; (d) SHHM 2# (dotted pink line indicates 
             the infi ll wall)

Table  1    Calculated and measured natural periods of the four buildings

Buildings T/T coeffi  cient Items 1st mode (s) 2nd mode (s) 3rd mode (s)
BAYG 2# 0.74 Measured 1.245 1.122 0.958

Calculated 3.584 3.311 2.651
JSXQ 3# 0.93 Measured 1.621 1.479 1.287

Calculated 3.605 3.487 3.344
XYY A# 0.78 Measured 0.917 0.865 0.800

Calculated 2.297 1.970 1.875
SHHM 2# 0.85 Measured 1.433 1.294 1.214

Calculated 3.722 3.702 3.168
        Note: T/T coeffi  cient denotes the calculated torsion period divided by the translation period
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The high-rise building model was built in the SATWE 
module of PKPM before transferring it to SAP2000. 
First, the accuracy and calculation errors of the models 
built in SAP2000 and PKPM should be estimated, and 
the identical modeling strategy was adopted for each 
modeling. The beam element was employed for the beam 
and column, and the thin-shell element was adopted to 
simulate the behavior of the shear wall and fl oor slab. 
As shown in Fig. 4, a pair of equivalent diagonal struts 
that resist compression force only was used to simulate 
an infi ll panel (Paulay and Priestley, 1992; Furtado et 
al., 2015). The diagonal strut model provides suffi  cient 
accuracy to represent the major characteristics of the 
load-displacement relationship of the infi ll wall. The 
mechanical properties, such as initial stiff ness, can be 
extracted from the curve. A constant thickness of the 
diagonal strut was assumed in each story. Similar to the 
modeling strategy in PKPM, the mass of the infi ll wall 
was converted into dead load, and then imposed on the 
corresponding beam. The density of the diagonal strut 
was set to zero. The complete quadratic combination 
(CQC) calculation method was employed to consider the 
structural torsional eff ect.

3.1  Initial stiff ness of diagonal strut for infi ll walls

Strut width   is  the key parameter of the diagonal 
strut in FE analysis, which was proposed by Mainstone 
(1971), as follows:
  

0.4=0.175 h d                               (1)

where h  is the dimensionless parameter that refl ects the 
relative stiff ness of the infi ll wall; and d  is the diagonal 
length of the panel.

h  can be calculated as follows:
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where Em, t , and h  are the elastic modulus, thickness, 
and height of the infi ll wall, respectively;   is the angle 
between the diagonal strut and beam; E  is the elastic 
modulus of the frame materials; and h  and I  are the 
height and moment inertia of the column, respectively.

The initial stiff ness ke of the infi ll wall is defi ned as 
follows:
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where L  is the length of the equivalent diagonal strut.

3.2  Model verifi cation for response spectrum analysis

Table 2 shows the types of FE models for the four 
selected high-rise buildings. Model 1 indicates the PKPM 
design model, Model 2 indicates the SAP2000 analysis 
model for comparison, and Model 3 adds the stiff ness 
eff ect of the infi ll wall to Model 2. Figure 5 shows the 
natural periods of the fi rst 12 modes calculated by Model 
1 and Model 2 of JSXQ 3#. The identical analysis results 
indicate that the model of SAP2000 can represent the 
PKPM model well with regard to structural design.
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In Model 3 with diagonal struts, the infi ll wall was 
built using MU10 shale porous bricks and M5 cement 
mortar (i.e., masonry compressive strength of 2.4 MPa, 
and Poisson′s ratio of 0.2). According to the test report 
of the contractor, the initial elastic modulus of the infi lls 
was selected as 1.85× 104 N/mm2. Because of the large 
diff erence of modal periods between the analysis result 
by FE software and measurement in the building JSXQ 
3#, the elastic modulus of the infi ll wall was modifi ed by 
a trial and error analysis to 1.45×104 N/mm2. As shown 
in Fig. 6, the modal period of JSXQ 3# predicted by the 
calibrated Model 3 agreed well with the measurement.

4   FE model for nonlinear dynamic analysis

In nonlinear behavior of a structure under large 

earthquakes, the lateral stiff ness of the infi ll wall 
gradually decreases as the damage develops (Almeida et 
al., 2016). To investigate the nonlinear seismic behavior 
of the structure using the calibrated infi ll wall model, 
PERFORM-3D,  specialized software for performance-
based seismic analysis, was used (Mamun and Saatcioglu, 
2017). The building models in PKPM were transformed 
by NosaCAD to PERFORM-3D for nonlinear dynamic 
analysis (Wu, 2012). The load cases in PERFORM-3D 
were identical to those in the SATWE module of PKPM, 
and a rigid fl oor was assumed for simple calculation.

Beams that have relatively small axial forces, are 
therefore usually not necessary to account for P-M 
interaction, while columns with relatively large axial 
forces, are therefore necessary to account for P-M 
interaction. Thus, beams usually bend in only one plane, 
and it is not necessary to consider biaxial bending or 
biaxial shear. While columns usually bend along about 
both cross section axes, biaxial bending and biaxial 
shear need to be considered. In PERFORM-3D, the 
element that consists of an intermediate elastic segment 
and a terminal elastic-plastic segment is used to describe 
the nonlinear behavior of frame members. The trilinear 
moment-curvature hysteretic models are utilized in 
the elastic-plastic segment of the beam under bending 
moment, and the fi ber model is adopted in the elastic-
plastic segment to describe the nonlinear behavior of 
the column under moment and axial force at both ends 
(Epackachi et al., 2012). The general shear wall element 
developed by PERFORM-3D was used in the wall 
model to consider the complex stress state (Burak and 
Comlekoglu, 2013). The coupling beam component is 
simulated by the beam element with a shear hinge to 
describe the nonlinear shear stiff ness. The diagonal strut 
model for the nonlinear behavior of the infi ll wall is 
considered in PERFORM-3D (Wu et al., 2014). Figure 
7 shows the load-displacement relationship of the infi ll 
wall in PERFORM-3D. The curve YULRX describes 
the concrete behavior, and the degeneration coeffi  cients 
for the energy dissipation capacity are 1.0 (point Y), 0.9 
(point U), 0.7 (point L), 0.4 (point R), and 0.3 (point 
X). The trilinear curve ‘YUX’ describes the behavior of 
reinforcing bars.  Figure 7(b) shows the hysteretic curve 
for one ma sonry diagonal at the bottom story of JSXQ 
3# under RSN 304 action.

Table 2   Analysis models of high-rise buildings

Models Software Mass of the 
infi ll wall

Stiff ness of the 
infi ll wall

Period reduction 
coeffi  cient Description

Model 1 PKPM Yes None Yes Design model
Model 2 SAP2000 Yes None None Comparison with the 

PKPM model
Model 3 SAP2000 Yes Diagonal strut None Response spectrum analysis
Model 4 PERFORM-3D Yes None Yes Comparison with the 

PKPM model
Model 5 PERFORM-3D Yes Diagonal strut None Nonlinear dynamic analysis
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4.1  Load-displacement relationship of infi ll walls

Figure 8 shows the procedure to calculate the load-
displacement relationship of the infi ll wall. The peak 
strength can be determined from Eq. (4), proposed by 
Zarnic and Gostic (1998) and revised by Dolsek and 
Fajfar (2008):
 

in tp 2
max 0.818 (1 1)I

I

L tf
F C

C
               (4a)

  
in1.925I

LC
h




                            (4b)

where Lin is the length of the infi ll wall; and ftp is the 
cracking stress of the masonry brick obtained from the 
diagonal compression test.

The mechanical properties including the peak 
strength and residual strength of the infi ll wall can be 
extracted from the load-displacement relationship of the 
nonlinear diagonal strut model. As shown in Fig. 4, the 
stiff ness of the infi ll wall is degraded to ehk  after crack 
initiation. According to Manzouri (1995) and Dolsek 
and Fajfar (2008), the cracking strength Fcr of the infi ll 
wall is approximately 0.55 times the peak strength (i.e., 

cr max=0.55F F ). The displacement cap  corresponding 
to the peak strength can be approximately defi ned as 
0.25% of the story drift ratio, on the basis of the test 

results performed by Manzouri (1995) and Shing et al. 
(2009). Dolsek and Fajfar (2008) suggested that the 
residual strength of the infi ll wall is 0.2 times the peak 
strength, and the corresponding displacement can be 
calculated by the displacement c  at zero strength. c  
is approximately fi ve times greater than cap based on 
a series of tests implemented by Carvalho and Coelho 
(2001).

4.2   Model verifi cation for nonlinear dynamic analysis

Model 4 indicates that the contribution of infi ll walls 
to structural stiff ness is considered using the period 
reduction factor in PERFORM-3D. As shown in Fig. 9, 
the modal periods of JSXQ 3# calculated by PERFORM-
3D are basically consistent with those of PKPM, which 
indicates that the PERFORM-3D analysis model is 
reasonable for nonlinear analysis.

In Model 5, the modeling of the diagonal strut for the 
infi ll wall is added to Model 4 (refer to Table 2). Table 3 
shows the design parameters of the infi ll walls in JSXQ 
3#. The height of the fi rst story is approximately 3.8 m, 
the height of the other stories is 2.9 m, and the width 
of the infi ll wall ranges from 1 m to 5.5 m. The width 
  and cross-sectional area of the diagonal strut can be 
calculated by Eq. (1). For C40 and C45 concrete used in 
the frame, the elastic modulus is defi ned as 3.25×104 N/mm2 

and 3.35×104 N/mm2, respectively. Compared with the 
measurement from the on-site dynamic test, the initial 
elastic modulus of the masonry infi lls was re-defi ned as 
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Table  3   Diagonal strut width according to design parameters in JSXQ 3#

Height of infi ll 
wall (mm)

Width of 
infi ll wall 

(mm)

Width of 
diagonal strut 

(mm)

Cross-section 
area of diagonal 

strut (mm2)

Height of 
infi ll wall 

(mm)

Width of 
infi ll wall 

(mm)

Width of 
diagonal 

strut (mm)

Cross-section 
area of diagonal 

strut (mm2)
h = 2900 1000 337 60649 h = 3800 1000 424 76385

2000 392 70538 2000 453 81571
3000 482 86815 3000 518 93190
4000 592 106474 4000 603 108505
5000 712 128159 5000 701 126179
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1.85×104 N/mm2. The contribution of the infi ll wall to 
the elastic analysis model of JSXQ 3# is dependent on 
the elastic modulus and cross-section area.

Figure 10 compares the natural periods according to 

the elastic modulus of the infi ll wall in JSXQ 3#. Using 
the least squares method for the periods of the 12 modes, 
the optimal initial elastic modulus of the infi ll wall in 
JSXQ 3# was estimated as 1.45×104 N/mm2. Modal 
damping of 5% and 0.2% k  damping were used in the 
global structure. The implicit Newmark-   calculation 
method was adopted to consider the actual condition of 
structural performance.

The envelope curve of the infi ll wall can be 
calculated using the proper elastic modulus. One of the 
most important coeffi  cients is the peak stress maxF , which 
depends on the length, width, height, and cracking stress

 ftp 
of the masonry infi ll wall according to Eq. (4). ftp is 

usually adopted as 4% to 8% of the masonry compression 
strength fc, which can be determined from Eq. (5):

c 1 1 2(1 0.07 )f k f f                        (5)

where 1f  is the compressive strength of brick; 2f  is the 

Fig. 9  Comparison of natural periods between Model 1 and 
             Model 4 in JSXQ 3#
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compressive strength of mortar; and 1k ,   and 2k  are 
the coeffi  cients related to the type of brick specifi ed in the 
design code. The reasonable range of  ftp can be acquired 
based on fc, and the specifi c value of ftp is determined 
based on the stiff ness degradation coeffi  cient n .

For example, the infi ll wall of JSXQ 3# was 
composed of perforated shale brick with cement 
mortar, and fc was calculated as 3.3 MPa in Eq. (5). The 
reasonable range of ftp was 0.13 MPa to 0.27 MPa (i.e., 
4 to 8% of fc), and the envelope curve of the infi ll wall 
was estimated according to the procedure in Fig. 8. Note 
that a 16% to 20% change of the elasticity modulus of 
the infi ll wall would generate the 15% to 35% decrease/
increase of the initial stiff ness in the envelope curve, and 
the global component performance is also aff ected as 
shown in Fig. 11. Figure 12 shows the envelope curves 
of the infi ll walls with various widths at the standard 
fl oor (h = 2.9 m) of JSXQ 3#, and ftp in all cases satisfi ed 
the reasonable range of 0.13 MPa to 0.27 MPa.

5  Response spectrum analysis results under 
     small earthquakes

5.1  Discussion of seismic infl uence coeffi  cient

In the design of four high-rise buildings, fi eld 
category class 2 specifi ed in the Chinese code 
corresponds to the fi eld with a mean shear wave velocity 

30V  between 260 m/s and 510 m/s in US code (Lu and 

Zhao, 2007). As shown in Fig. 13, the natural periods of 
the 1st mode in the high-rise buildings are expected to lie 
in the long period region of the target response spectrum, 
which decreases the seismic infl uence coeffi  cient. The 
measured and calculated natural periods of the four 
buildings were marked in the response spectrum.

Table 4 shows the detailed information used in 
the response spectrum analysis. Both the PKPM and 
initial SAP2000 FE models overestimated the natural 
periods of the actual building structures because of the 
lack of calibration, which underestimated the seismic 
infl uence factor. After the calibration of the analysis 
models, the fundamental periods agreed well with the 
measured modal data, and then the calibrated models 
generated nearly the same seismic infl uence factor   
as shown in Fig. 13. Thus, the conventional design 
process ignoring the stiff ness eff ect of infi ll walls had the 
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Width = 4 m
Width = 5 m

ftp = 0.211
ftp = 0.218

ftp = 0.170

Table 4   Seismic coeffi  cients for response spectrum analysis

Coeffi  cient αmax η1 η2 γ Tg ζ
Value 0.04 0.02 1 0.9 0.35 0.05

                           Note: αmax denotes the maximum seismic infl uence coeffi  cient, η1 denotes the slope regulation 
                                          coeffi  cient of the linear decrease stage, η2 denotes the damping modifi cation factor,
                                          γ denotes the attenuation index, Tg denotes the design basic earthquake acceleration, 
                                          and ζ denotes the damping ratio
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potential to generate an inaccurate result because of the 
underestimated seismic infl uence factor  , even when 
the period reduction coeffi  cient was considered.

5.2  Inter-story shear force

Figure 14 shows the inter-story shear distributions 
of Model 1 and Model 3 calculated by the mode-
superposition response spectrum analysis in the 
X-direction. The shear force at the bottom story of the 
Model 3 was approximately 1.5 to 2 times greater than 
that of Model 1 due to the contribution of the infi ll wall to 
the structural stiff ness and resistance to seismic loading.

5.3   Inter-story drift

Figure 15 shows the story drift distributions of 
Model 1 and Model 3 for the four high-rise buildings. 
The roof displacement of Model 1 was 3 to 6 times 
greater than that of Model 3. 

Figure 16 shows the inter-story drift ratio 
distributions of Model 1 and Model 3, and both values 
satisfi ed the drift requirement of the design codes. 
The inter-story drift ratio is defi ned as the maximum 
inter-story drift divided by the height of each fl oor 
( u h ), which should be less than the requirement of 
the structural horizontal displacement to prevent the 
degradation of the stability and operational performance 
of the structure. The maximum inter-story drift ratio of 
Model 1 was 3 to 6 times greater than that of Model 3.

The Chinese design code JGJ 3-2010 (2010) specifi es 
the period reduction factor of 0.7 to 0.8 for a frame-
shear structure and 0.8 to 1.0 for a shear wall structure. 
The Canadian design code (NRCC, 2005) specifi es the 
coeffi  cient for the natural frequency of 0.8 for infi ll 
structures. Although the period reduction factor was 
utilized in PKPM, the inter-story shear force calculated 
by Model 1 was approximately 0.5 times less than that 
of Model 3, and the horizontal drift and inter-story drift 
ratio of Model 1 was approximately 3 to 4 times greater 
than that of Model 3 (refer to Figs. 14 to 16). Thus, 
the recommended values need to be revised to better 
evaluate the shear force and drift ratio in elastic state.
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6  Nonlinear dynamic analysis results under 
      large earthquakes

6.1  Earthquake records

In nonlinear dynamic analysis, the seismic records 
should be carefully selected based on the spectrum 

characteristics, eff ective magnitude acceleration, and 
seismic duration (GB 50011-2010, 2010). Three qualifi ed 
seismic waves in PEER were selected for each high-rise 
building (refer to Table 5), and the seismic waves were 
scaled compared with the corresponding target response 
spectrum (refer to Fig. 17). The seismic waves were 
applied to FE Models 4 and 5 of four high-rise buildings 
to conduct nonlinear dynamic analysis.

Table 5   Earthquake records for nonlinear dynamic analysis

Buildings No. Record No. Earthquake records Time Mag. D5-95 V30 (m/s) PGA (cm/s2)
BAYG 2# 1 RSN66 San Fernando 1971 6.61 23.9 328.09 41.26

2 RSN300 Irpinia_Italy-02 1980 6.20 20.0 455.93 172.27
3 RSN906 Big Bear-01 1992 6.46 21.5 328.09 79.07

JSXQ 3# 1 RSN304 Irpinia_Italy-02 1980 6.20 22.1 496.46 20.79
2 RSN921 Big Bear-01 1992 6.46 23.2 312.47 76.71
3 RSN937 Big Bear-01 1992 6.46 22.4 416.15 36.11

XYY A# 1 RSN88  San Fernando 1971 6.61 23.6 389.00 151.77
2 RSN300 Irpinia_Italy-02 1980 6.20 20.0 455.93 172.27
3 RSN1046  Northridge-01 1994 6.69 22.0 339.60 59.51

SHHM 2# 1 RSN140  Tabas_Iran 1978 7.35 24.2 302.64 102.75
2 RSN300 Irpinia_Italy-02 1980 6.20 20.0 455.93 172.27
3 RSN906 Big Bear-01 1992 6.46 21.5 328.09 79.07

           Note: D5-95 denotes the signifi cant duration from 5% to 95% of Arias intensity; V30 denotes the shear wave velocity in the 
                     upper 30 m; and PGA denotes the peak ground acceleration
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6.2   Inter-story shear force

Figure 18 shows the shear force distribution of the 
column, shear wall, and infi ll wall. The global structural 
stiff ness was strengthened by the infi ll wall in Model 5, 
which increased the inter-story shear force up to 30% 
to 50%. In Model 4 of BAYG 2#, the inter-story shear 
force was mainly resisted by the shear wall. On the other 
hand, the infi ll wall in Model 5 resisted a large amount 
of shear force according to the calculation results, which 
may cause the fi rst shear failure in the infi ll wall. In the 
other three shear wall structures, the contribution of the 
infi ll wall to the shear resistance was less than that of 
BAYG 2#. This is because of the specifi c arrangement 
of the infi ll wall or the diff erent structure system used.

 6.3   Inter-story drift

Figure 19 shows the story drift of Model 4 and Model 
5. Model 5 exhibits 20% to 50% lower story drift due to 
the contribution of the infi ll wall to the lateral stiff ness. 
Note that the contribution of the infi ll wall to the stiff ness 
of the frame-shear wall structure is greater than that of 
the shear wall structures under large earthquakes.

Figure 20 shows the inter-story drift ratio of Model 4 
and Model 5. The drift ratio increases and then decreases 
from the bottom story to roof story. The maximum inter-
story drift ratio occurred at the lower story as the global 
structural stiff ness was increased by the infi ll wall, 

and 20% to 50% lower drift ratios were presented in 
Model 5. The discrepancy of the inter-story drift ratio 
between the two models for BAYG 2# (i.e., frame-shear 
wall structure) was greater than that of the other three 
buildings (i.e., shear wall structure). The inter-story 
drift ratio of the frame-shear wall structure was less 
than 0.005 rad, and the ratio of the shear wall structures 
was less than 0.0025 rad, which satisfi ed the Chinese 
design code requirement of 0.01 rad and 0.0083 rad for 
the frame-shear wall structure and shear wall structure, 
respectively.

6.4  Seismic energy dissipation

Figure 21 shows the mean energy dissipation 
estimated by Model 4 and Model 5 for nonlinear 
behavior of the structures under three selected seismic 
waves. Compared with Model 4, the enhancement of the 
structural stiff ness by the infi ll wall in Model 5 increased 
the energy dissipation of the structures. Regarding 
the dissipated energy distribution of the structural 
components, a large amount of seismic energy was 
dissipated by the fl exural behavior of beams of BAYG 
2# in Model 4. However, the contribution of the beams 
to the energy dissipation was signifi cantly decreased, 
and the infi ll wall contribution increased in Model 5 with 
the infi ll wall. Similar to the previous analysis results, 
the infi ll wall dissipated most of the earthquake energy. 
This result indicates that the infi ll wall is a more critical 

30

20

10

0
0                                5000                             10000
                  Inter-story shear force (kN)

Global structure (Model 4)
Global structure (Model 5)
Column (Model 4)
Column (Model 5)
Shear wall (Model 4)
Shear wall (Model 5)
Infi lled wall (Model 5)

(a)

BAYG 2#

(c) (d)

SHHM 2#

Fig. 18   Shear force distribution of buildings under large earthquakes: (a) BAYG 2#; (b) JSXQ 3#; (c) XYY A#; (d) SHHM 2#

50

40

30

20

10

0

JSXQ 3#

XYY A#

(b)

St
or

y 
(n

)

St
or

y 
(n

)

Global structure (Model 4)
Global structure (Model 5)
Shear wall (Model 5)
Infi lled wall (Model 5)

0              5000         10000         15000         20000
                  Inter-story shear force (kN)

30

20

10

0

St
or

y 
(n

)

40

30

20

10

0

St
or

y 
(n

)

Global structure (Model 4)
Global structure (Model 5)
Shear wall (Model 5)
Infi lled wall (Model 5)

Global structure (Model 4)
Global structure (Model 5)
Shear wall (Model 5)
Infi lled wall (Model 5)

0                    5000                10000               15000
                  Inter-story shear force (kN)

0                    5000                10000               15000
                  Inter-story shear force (kN)



100                                           EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                            Vol. 19

30

20

10

0
0                    200                   400                   600
                  Inter-story drift (mm)

(a)

BAYG 2#

(c) (d)

SHHM 2#

Fig. 19   Story drift of buildings under large earthquakes: (a) BAYG 2#; (b) JSXQ 3#; (c) XYY A#; (d) SHHM 2#
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Fig. 20   Inter-story drift ratio under large earthquakes: (a) BAYG 2#; (b) JSXQ 3#; (c) XYY A#; (d) SHHM 2#
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member than the other structural m embers including the 
beam, column, and shear wall.

Although the FE model of high-rise buildings is 
calibrated by the natural modal parameters in the linear 
elastic stage, the nonlinear behavior can be changed, 
which may diff er from the actual situation as a complex 
process for model calibration is required. Further, the 
eff ects of torsion and eccentricity on the structural 
behavior should be taken into account for the asymmetric 
structural fl oor plan condition. An innovative ideology 
was simply introduced in this study, but further research 
on nonlinear performance is needed for deeper analysis.

7  Conclusions

In the present study, linear and nonlinear dynamic 
seismic assessments of high-rise buildings were 
performed to consider the eff ect of infi ll walls. Based 
on the St-Id ide ology, FE models with crossed diagonal 
struts were built in SAP2000 and PERFORM-3D, and 
the design parameters of the infi ll wall were calibrated 
by comparing the modal periods with the measurements 
from ambient vibration tests. Two refi ned FE models 
  were employed to evaluate the seismic performance of 
the structures: response spectrum analysis under small 

earthquakes and nonlinear dynamic analysis under large 
earthquakes. The main conclusions are as follows:

(1) When the contribution of the infi ll wall to the 
stiff ness is not considered, a large discrepancy of the 
modal periods between the calculated results of PKPM 
and measured values was observed. To consider the eff ect 
of infi ll walls in static analysis, the crossed diagonal 
struts were used in FE models of SAP2000 for four high-
rise buildings. The structural dynamic characteristics 
obtained from ambient vibration tests were applied to 
calibrate the FE model, and the updated models better 
predicted the modal periods.

(2) Response spectrum analysis was performed 
by the calibrated SAP2000 model and PKPM model 
to evaluate the elastic seismic performance of the 
structures under small earthquakes. The analysis results 
showed that compared with the predictions made by 
the calibrated model of SAP2000, the PKPM model 
estimated an approximately 50% lower inter-story shear 
force and 3 to 4 times greater story drift and drift ratio. 
Thus, the period reduction factor of design codes could 
be revised to better evaluate the structural performance 
in the elastic state.

(3) On the basis of the initial elastic modulus 
calibrated using the periods measured from the 
actual buildings, the envelope curve with nonlinear 

Fig. 21   Comparison of diff erent members under large earthquakes: (a) BAYG 2#; (b) JSXQ 3#; (c) XYY A#; (d) SHHM 2#
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characteristics of infi ll wall was calculated by the 
detailed constitutive relationship formulas with the 
proper elastic modulus. For nonlinear dynamic analysis, 
the diagonal strut model to describe the eff ect of infi ll 
walls was applied to PERFORM-3D.

(4) Nine earthquake records were selected for 
nonlinear dynamic analysis of the four high-rise buildings 
with or without infi ll walls. The analysis results showed 
that the maximum inter-story drift ratio of the buildings 
satisfi ed the requirement of the design codes. Infi ll walls 
signifi cantly contributed to increasing the global lateral 
stiff ness to 30% to 50%, which decreased the inter-story 
drift ratio to 20% to 50%. Note that the eff ect of infi ll 
walls on the shear demand and drift ratio is signifi cant 
in the frame-shear wall structure, rather than the shear 
wall structure.

(5) The use of infi ll walls increased the energy 
dissipation capacity in both the frame-shear wall structure 
and shear wall structure. The contribution of the beam to 
the energy dissipation decreased, and the contribution of 
infi ll walls to energy dissipation increased.
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