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Abstract: Moving load identification from the dynamic responses of bridges is 
a typical inverse problem that is solved to estimate vehicle axle loads in motion 
from observed data. To reduce the ill-posedness of the problem and improve 
solution accuracy, this paper proposes a method for reconstructing the dynamic 
displacement response via combining the measured acceleration and strain 
signals for moving load identification. The identification accuracy achieved by 
employing the reconstructed displacement under different vehicle speeds and 
different identification algorithms was investigated via finite element (FE) 
analysis, and a laboratory experiment of a simply supported beam model was 
constructed to validate the effectiveness of the proposed method. Both the 
computation simulations and experimental results indicate that the 
reconstructed displacements fit the true values well and the proposed method 
can effectively overcome the ill-posedness of the problem in terms of equation 
resolution and achieve a high level of accuracy. 

Keywords: moving load identification; acceleration; dynamic strain; signal 
reconstruction; modal decomposition. 
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1 Introduction 

The amplitude of moving vehicle loads on bridges has a considerable influence on their 
service life. Moreover, dramatically increasing traffic volumes and overweight trucks 
may cause fatigue and serious damage to a bridge structure, even leading to bridge 
collapse in some extreme cases (Beizma and Schanack, 2007; Lydon et al., 2016; Wang 
et al., 2016). Therefore, vehicle loads in motion must be identified by employing 
advanced and reliable techniques for bridge design and maintenance. 

Extensive studies on moving load identification have been conducted by scholars in 
the last 30 years. Most of these studies simplified the bridge as a uniform simply 
supported beam or multi-span continuous beam. O’Connor and Chan (1988) proposed 
interpretive method I (IMI) using on-site measurements of bridge strains for dynamic 
wheel load identification. Law et al. (1997) proposed a time domain method (TDM) 
based on modal superposition theory to identify the dynamic interaction forces in the 
time domain by using bending moment and acceleration measurements simultaneously. 
Law et al. (1999) used a new method, the frequency-time domain method (FTDM), to 
acquire the time histories of moving forces by converting a set of equations relating the 
Fourier transform into the time domain. Both the TDM and FTDM are based on system 
identification theory. The interpretive method II (IMII), introduced by Chan et al. (1999), 
identifies the time-varying moving loads by numerical methods based on Euler’s beam 
theory instead of the beam element model, which differs from IMI. Thereafter, quite a 
few comparative studies (Chan et al., 2000, 2001a, 2001b; Yu and Chan, 2007; Zhu and 
Law, 2002b) were conducted to investigate the influence of various parameters on the 
four classic methods (IMI, IMII, TDM and FTDM) applied for moving force 
identification system (MFIS). In addition to the system identification technique, the finite 
element (FE) method was used for the dynamic axle load identification research based on 
the vehicle-bridge coupled system (Law et al., 2004; Deng and Cai, 2010b, 2011; Zhu 
and Law, 2003b). To improve the accuracy in solving over determined set of equations, 
the singular value decomposition (SVD) technique (Yu and Chan, 2002, 2003, 2007) and 
the truncated generalised SVD algorithm (Chen and Chan, 2017) were employed to 
identify the force history. Since the nature of the inverse problem is ill-conditioned 
(Sanchez and Benaroya, 2014; Yu et al., 2016; O’Brien et al., 2008), regularisation, 
especially Tikhonov regularisation, is often utilised to provide bounds to the  
ill-conditioned forces and effectively reduce the noise corruption (Law and Zhu, 2000; 
Zhu and Law, 2002a; Law et al., 2001; Law and Fang, 2001; Zhu and Law, 2006; 
González et al., 2008). The updated static component (USC) technique has also been 
adopted in several studies (Asnachinda et al., 2008; Pinkaew, 2006; Pinkaew and 
Asnachinda, 2007) to eliminate the difficulty of an optimal regularisation selection and 
achieve a higher efficiency. Besides, the modified preconditioned conjugate gradient  
(M-PCG) method (Chen et al., 2018) was proved more robust to ill-conditioned equations 
in dealing with inverse problems, and the optimisation algorithm was available in moving 
load estimation (Pan and Yu, 2014). In the field of MFIS for the continuous bridges, a 
series of studies have been carried out and achieved good accuracy (Chan and Ashebo, 
2006; Chan et al., 2006; Zhu and Law, 1999, 2001b, 2006). The multiple vehicle axle 
loads on a multi-span continuous bridge were successfully identified based on the least 
squares regularisation optimisation (Asnachinda et al., 2008). In terms of expanded 
applications, a case that a vehicle travelling on slab-type bridges was also discussed (Zhu 
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and Law, 2001a, 2003a, 2003b, 2003c; Law et al., 2007), in which the bridge deck was 
modelled as an orthotropic plate and the moving loads were estimated from the dynamic 
responses. The measured time-domain responses can also be employed to identify the 
pre-stressed force of a pre-stressed concrete bridge by a system identification approach 
(Chan and Yung, 2000; Law and Lu, 2005; Lu and Law, 2005). In addition, numerous 
achievements in moving load identification have been made in recent years with the 
application of artificial neural networks (ANNs) (Lu et al., 1993; Park et al., 2009; Kowm 
et al., 2014) and genetic algorithms (GAs) (Deng and Cai, 2010a). 

Based on previous studies, two fundamental problems exist in moving load 
identification: 

1 The measured response may not be a part of the true response data collection 
induced by load excitations, which may result in non-solution to the motion 
equations. 

2 Tiny measurement errors in signals may lead to critical mistakes, which are biases of 
the solution due to the ill-conditioned matrix; therefore, the emphasis of solving the 
inverse problem lies in how to solve the ill-posed equations, and to correctly estimate 
the time history of the moving loads, the dynamic algorithms must be optimised and 
improved and the measurement errors must be eliminated. 

In the dynamic inspection of a bridge, acceleration and dynamic strain are generally 
measured along the bridge, thus efficiently utilising both of these two kinds of data are 
desired to improve the identification accuracy. In this paper, a novel moving load 
identification method is proposed by utilising measured acceleration and strain signals on 
a bridge. The dynamic displacement of a bridge subjected to moving loads consists of the 
vibration displacement caused by inertia force as well as the static displacement caused 
by static force. The acceleration and strain signals were measured simultaneously to 
improve the identification accuracy. The dynamic displacement was reconstructed by a 
series of signal processing processes, including decomposition, optimisation and 
conversion of the strain and acceleration signals. The reconstructed vibration 
displacement signal was obtained by the integration of measured acceleration, and the 
static displacement signal was deduced from the measured strain signals utilising the 
curvature function fitted with the least mean squares method. Finally, the reconstructed 
dynamic displacement was used to identify the moving loads after superposition of 
vibration and static displacements. To verify the accuracy of the proposed method, a 
simply supported girder bridge with a span length of 25 m was set up by numerical 
simulation, and a set of dual-axle time-varying loads was applied to the bridge. Then, the 
IMII and TDM algorithms were used to evaluate the accuracy and reliability of the 
identified loads. The tested model for vehicle load identification was further constructed 
in the laboratory to verify the feasibility of the proposed method in an experiment, and 
the moving loads under different weights and speeds cases were successfully identified 
by the reconstructed displacement. 

2 Reconstruction of dynamic displacement 

The dynamic displacement of a beam under the moving loads is composed of not only the 
vibration displacement caused by inertial force but also the static displacement caused by 
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static loads. To obtain acceptable results, a signal processing scheme was applied to the 
directly measured data, and the dynamic displacement was reconstructed based on the 
strain and acceleration signals, as shown in Figure 1. 

Figure 1 Reconstruction of dynamic displacement signal 

 

3 Theory of moving load identification 

3.1 Equilibrium equation of vibration 

The bridge can be simplified as a simply supported beam model to demonstrate the 
method. The beam is assumed to have a constant cross-section with a span length L, 
constant mass per unit length ρ, constant flexural stiffness EI and viscous proportional 
damping ratio C. The beam is assumed to be a Euler-Bernoulli beam without 
consideration of shear deformation and rotary inertia. When the time-varying point force 
P(t) is moving on the beam from left to right at a speed of c, as shown in Figure 2, the 
vibration equation of the beam can be expressed as shown in equation (1). 

2 4

2 4
( , ) ( , ) ( , ) ( ) ( )x t v x t v x tρ C EI δ x ct P t
t t x

∂ ∂ ∂+ + = −
∂ ∂ ∂

 (1) 



   

 

   

   
 

   

   

 

   

   262 Y. Zhou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

where v(x, t) is the deflection at point x and time t and δ(x – ct) is the Dirac delta 
function. 

Figure 2 Simply supported beam for moving load identification 

 

The nth mode shape function of the beam can be written as φn(x) = sin(nπx/L). Hence, the 
solution of equation (1) can be assumed to follow the form of equation (2): 

1

( , ) ( ) ( )n n
n

v x t x q t
∞

=

=φ  (2) 

where n is the mode number and qn(t) (n = 1, 2, 3, …, ∞) are the displacements of the nth 
mode. By substituting equation (2) into equation (1), integrating the resultant equation 
with respect to x between 0 and l, and introducing the boundary conditions of the simply 
supported beam, the equation of motion (EOM) can be expressed in generalised modal 
coordinates, as shown in equation (3): 

2 2( ) 2 ( ) ( ) ( ) ( 1, 2, 3, , )n n n n n n nq t ξ ω q t ω q t P t n
ρL

+ + = = ∞    (3) 

where 
2 2

2
,

2n n
n

n π EI Cω ξ
L ρ ρω

= =  and ( ) ( )sinn
nπxP t P t

L
 =  
 

 indicate the modal 

frequency, modal damping and modal force of the nth mode, respectively. x  is the 
distance from the concentrated force to the left side support. If the time-varying force P(t) 
is known, the modal displacements qn(t) can be obtained from equation (3); thus, the 
dynamic deflection v(x, t) can be calculated by equation (2). The calculation process is a 
typical forward problem. The unknown load P(t) can be deduced by acquiring the 
displacement, velocity and acceleration data at each measurement point of the structure. 

3.2 Interpretive method II 

When the boundary conditions correspond to the simply supported case, the exact 
solution for the bridge responses under dynamic forces can be deduced (Chan et al., 
1999). If n moving loads are applied to the beam, using the modal decomposition 
method, equation (3) can be written as 
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 (4) 

where ˆkx  is the distance from the kth load to the first load and 1̂x  = 0 when k = 1. 
If P1, P2, …, Pk are constant moving loads when ignoring the effect of damping, 

equation (1) has the following closed-form solution: 

( )
( )3

2 2 2
1 1

ˆ ˆ1( , ) ( ) sin sin sin
48

k
i i

i n
i n

L nπx nπ ct x xv x t P x ω t
EI L L n cn n

∞

= =

 −  = − −   −    α
α

 (5) 

where .
n

πv
Lω

=α  As long as the displacements at x1, x2, …, xn are available, the 

magnitude of each constant moving load can be acquired from equation (6): 

[ ]{ } { }vpv S P=  (6) 

where 

11 1 1

1

1

[ ]

i k

vp m mi mk

l li lk

S S S

S S S S

S S S

 
 
 
 =
 
 
  

 
  

  
 

 and 
3

2 2 2
1

ˆ ˆ1 ( )sin sin sin
48 ( )

i i
mi n

n

L nπx nπ ct x xS ω t
EI n n L L n c

∞

=

 −  = − −  −    α
α

 

where l and k indicate the number of displacement measurement stations and axle loads, 
respectively. If l ≥ k, the load can be estimated by the least squares method, as shown in 
equation (7). 

[ ] [ ]( ) [ ]
( 1)

{ }T T
vp vp vpP S S S v

−
 (7) 

Accordingly, this method can be applied to estimate moving time-varying axle loads 
from equation (4), in which the values of the axle loads at any time can be solved using 
the least squares method. 
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3.3 Time domain method 

The TDM uses modal superposition to identify time-varying axle loads in the time 
domain. Based on the motion equation, the modal displacement qn(t) can be solved from 
equation (3) via a convolution integral in the time domain (Law et al., 1997). 

0

1( ) ( ) ( )
t

n n n
n

q t h t τ P t dτ
M

= −  (8) 

where 1( ) sin( )( 0),n nξ ω t
n n

n
h t e ω t t

ω
− ′

′
= ≥  in which 2 21 , .n n n nω ω ξ M

ρL
′ = − =  

When substituting equation (8) into equation (2), the dynamic deflection of the beam 
at point x and time t can be expressed as follows: 

( )
01

1( , ) sin sin ( )sin ( )n n
t

ξ ω t τ
n

n ni

nπx nπcτv x t e ω t τ P τ dτ
M ω L L

∞
− − ′

′
=

= −   (9) 

The bending moment of the beam at point x and time t can be expressed as shown in 
equation (10). 

2

2

2 2
( )

3 01

( , )( , )

2 sin sin ( )sin ( )n n
t

ξ ω t τ
n

nn

v x tM x t EI
x

EIπ n nπx nπcτe ω t τ P τ dt
ρL ω L L

∞
− − ′

′
=

∂= −
∂

= − 
 (10) 

Assuming that the time-varying load P(t) is a step function in a short time interval Δt, 
equation (10) can be rewritten in discrete terms as 

2 2
( )

3
1 0

2( ) sin sin ( )sin ( ) ,

0, 1, 2, 3, ,

n n

i
ξ ω t i j

n
nn j

EIπ n nπx nπc tjM i e ω t i j P j t
ρL ω L L

i N

∞
− Δ − ′

′
= =

Δ= Δ − Δ

=

 


 (11) 

where Δt is the sampling time interval and N + 1 is the number of sample points. 
When a vehicle enters onto and leaves the bridge, assuming that P(0) = P(NE) = 0 

such that M(0) = M(1) = 0, then equation (11) can be rewritten in the matrix form as 
shown in equation (12). 

( )

1
1 2

2 1
1 2 1 2

1
1 2

1 2 1 2

(2) (1) (1) 0 0
(3) (2) (1) (1) (2) 0

( ) ( 1) (1) ( 2) (2)
(1)
(2)

1

n

n n
xn

i
N N
n n ee

B

M E S S
M E S S E S S

C

M N E S N S E S N S b
P
P

P N

∞

=
− −
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Where 
2 2

3
2 sin ,xn

n

EIπ n nπxC t
ρL ω L′

= Δ  ( ) ,n ni j ξ ω t i j
nE e− − Δ −=  1( ) sin ( ),nS i j ω t i j′− = Δ −  and 

2 ( ) sin .nπc tS j j
L

Δ =  
 

 M(i) is the bending moment of the ith time step, P(i) is the axle 

load at the ith time step, the subscript N denotes the number of sampling points for the 
measured bending moment response, NB = L/cΔt indicates the number of sampling points 
for the time-varying load moving through the entire bridge deck, and 

( ) ( )1
1 21 1BN N

ee n B Bb E S N N S N− += − + −  (13) 

Equation (12) can be simplified as 

[ ]{ } { }B P M=  (14) 

where [B] is a coefficients matrix relating the parameters of the vehicle-bridge system; 
{P} is the time-varying load vector; and {M} is the vector of the bending moment 
responses. If N = NB and [B] is a lower triangular matrix, the load vector {P} can be 
directly solved by equation (14). If N > NB or there are Nl responses for the bending 
moment (Nl > 1) from the measuring points, {P} can be obtained by the least squares 
method. In addition, equation (14) can be utilised to perform load identification referring 
to a two-axle vehicle load based on the linear superposition principle. 

The above procedure is derived for single force identification. Equation (14) can be 
modified for two-force identification using the linear superposition principle (Law et al., 
1997) 

1

2

0
{ },

a

b a

c b

B
P

B B M
P

B B

 
   =      

 (15) 

where Ba [Ns × (NB – 1)], Bb [(N – 1 – 2Ns) × (NB – 1)] and Bc [Ns × (NB – 1)] are 
submatrices of matrix B. The first row of submatrices in the first matrix describes the 
state of having the first force on the beam after its entry. The second and third rows of 
submatrices describe the states having two forces on the beam and one force on the beam 
after the exit of the first force. The entire matrix has dimensions of (N – 1) × (NB – 1).  
Ns = ls/cΔt, where ls is the distance between the two forces. The two forces can be 
identified using more than one bending moment measurement. 

4 Displacement caused by the static load 

The static displacement is obtained through the strain signal caused by the static load. 
After performing empirical mode decomposition (EMD) on the strain signal, the  
high-frequency component will be filtered to extract the time history curve of the static 
strain. Then, the curvature function of the beam can be obtained by the least squares 
method. Finally, the vertical displacement involved with the static load is estimated by 
the relationship between the curvature and vertical displacement. 
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4.1 Empirical mode decomposition 

The Hilbert-Huang transform (HHT) method is proposed for non-stationary and  
nonlinear signal analysis by Huang (2000). The key step of HHT is to use the EMD 
method that decomposes the complex signal into a collection of intrinsic mode functions 
(IMFs). Since the decomposition is based on the local characteristic time scale of the 
data, mean or zero reference is not required in the EMD method, which is adaptive and 
efficient for analysing non-stationary and nonlinear time series. 

The EMD method is based on the following assumptions (Huang et al., 1998): 

1 The signal has at least two extremes, one maximum and one minimum. 

2 The local characteristic time scale is defined by the time lapse between the extrema. 

3 If the data were totally devoid of extrema but contained only inflection points, then 
they can be differentiated once or more times to reveal the extrema. The final results 
can be obtained by integrating the components. 

Each IMF extracted by the sifting process satisfies two conditions: 

1 the number of extrema and the number of zero crossings must either equal or differ 
at most by one 

2 the envelope is defined by the local minima. 

An IMF involves only one mode of oscillation embedded in the vibration signal and gives 
rise to a well-defined instantaneous frequency. By using the EMD method, the original 
multicomponent signal is decomposed into a series of mono-components, making it 
accessible for further analysis, while some problems remain in the decomposed result, 
such as end effects and the mode mixing problem. 

4.2 Displacement by the curvature function 

For the beam, the displacement v is defined as the deflection of the cross-section in the 
direction perpendicular to the neutral axis during bending deformation. The neutral axis 
forms a plane curve in the central principle plane of inertia, which is called the deflection 
curve. The strain ε represents the deformation of the infinitesimal element per unit length 
subjected to stress, and the curvature k indicates the bending extent of the beam. An 
element with length dx is randomly selected from the bending beam, as shown in  
Figure 3, where O1O2 is the neutral axis of the beam element; y is the distance from the 
edge to the neutral axis; ρ is the radius of curvature; and the length of the neutral axis 
remains constant before and after the deformation. 

Thus, the length change Δs of the beam edge can be expressed as 

1 2 ( )ab O Os l l ρ y dθ ρdθ ydθΔ = − = + − =  (16) 

Accordingly, the magnitude of strain ε can be calculated as 

s ydθ yε
dx ρdθ ρ
Δ= = =  (17) 
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In equation (17), the strain and curvature at the same location are linearly correlated. 
According to the differential theorem and ignoring the effect of second-order terms, the 
deflection-curvature relationship can be expressed as 

2

2
1
( )

d v
ρ x d x

=  (18) 

The deflection curve can be obtained by integrating the beam curvature function twice, 
and the strain and curvature at the same cross-section are linearly correlated; thus, the 
strain-deflection relationship can be formed through the curvature. 

Figure 3 Curvature deformation of the beam element 

 

5 Displacement caused by the inertia force 

Vibration displacement can be obtained by integrating the measured acceleration signal 
twice in the frequency domain. As shown in Figure 1, in the signal processing procedure, 
the signal should be filtered and the trend term should be eliminated before each step of 
integration, so the adaptive least-mean-square (LMS) algorithm for noise reduction is 
adopted. 

5.1 LMS adaptive noise reduction 

On the basis of the Wiener filter, the LMS algorithm developed with the minimum mean 
square error (MMSE) and the steepest-descent algorithm, which simulates a desired 
signal by finding the filter weights, is related to producing the least mean square of the 
error signal. Based on the gradient decent algorithm, the adaptive LMS filter updates the 
weights to approach the optimum values for minimising the error criterion. 
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Figure 4 Flowchart of LMS adaptive noise reduction 

 

The main procedure of the adaptive LMS algorithm (Zhu et al., 2016) is as follows: 

1 Calculate the output signal y(n) from the adaptive filter: 

( ) ( ) ( )Ty n X n W n=  (19) 

where n indicates the number of iterations of the algorithm, X(n) is the input signal in 
vector form and W(n) is the filter weights in vector form. 

2 By calculating the difference between the reference signal d(n) and the filter’s output 
y(n), the error signal e(n) is acquired as follows: 

( ) ( ) ( )e n d n y n= −  (20) 

3 Update the filter weights by the steepest-descent algorithm: 

( 1) ( ) 2 ( ) ( )W n W n μe n X n+ = +  (21) 

where W(n + 1) indicates the filter weights for the next iteration and μ is the 
convergence factor, which can be used to control the filtering rate. 

4 Repeat steps 1 to 3 until the algorithm converges, continuous iteration and updating 
the filter weights will contribute to achieving the minimum mean square error 
E[e2(n)]. Meanwhile, the output signal y(n) approaches the reference signal d(n). 

The LMS filter carries out filtering using only the observable signals x(n), d(n) and e(n) 
without involving any matrix operations, so it has low computational complexity for 
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adaptive noise reduction. The flowchart of adaptive LMS algorithm for noise reduction is 
shown in Figure 4. 

5.2 Integration in the frequency domain 

Fourier transform can be performed to convert the signals from the time domain to the 
frequency domain. Meanwhile, the signal can be restored to the time domain by inverse 
Fourier transformation. Then, the displacement value in the time domain can be obtained 
from the signal by reserving its real part. The integration method is shown in the 
flowchart in Figure 5. 

Figure 5 Flowchart of the integration method 

 

Assuming a discrete acceleration sequence a(n) in the time domain with a data length N, 
the discrete Fourier transform (DFT) is performed according to equation (22). 

2 ( 1)( 1)

1

0

1( ) ( )

( 1)( ) (1 )
2

N π k n i
N k ka k a n e a b i

N
n ff k k N

N

− − − 
  


= = +




− = ≤ ≤


 (22) 



   

 

   

   
 

   

   

 

   

   270 Y. Zhou et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

where a(k) is the Fourier transform of the acceleration sequence a(n), f(k) is the 
corresponding frequency and f0 is the sampling frequency. The amplitude Ak of the simple 
harmonics, the modal frequency ωk and the initial phase ωk, corresponding to a(k), can be 
obtained by equation (23). 

2 2

arctan

2

k k k

k
k

k

k k

A a b
b
a

ω πf

 = +

  =  

 
 =

φ  (23) 

The simple harmonic wave is expressed as 

( )( ) cosk k k ka t A ω= +φ  (24) 

The displacement harmonic wave is available after double integration for a(t)k, as shown 
in equation (25). 

( )( ) cosk zk sk skS t A ω t= +φ  (25) 

where Ask = Ak/ 2 ,kω  φsk = φk – π, ωsk = ωk. 
Based on the signal superposition principle, the displacement curve can be obtained 

as shown in equation (26). 

( )
1 1

( ) ( ) cos
N N

k sk sk sk
k k

S t S t A ω t
= =

= = +  φ  (26) 

By performing inverse Fourier transformation, the equation above can be rewritten as 

( ) ( ) ( ) ( )1
2 2

1 1( ) ( ) ( ) ( ) ( ) ( )sF s t H ω F a t F a t s t F F a t
ω ω

−  = = −  = −   
 (27) 

where F(x) indicates performing Fourier transform on the function, He(ω) is the transfer 
function, a(t) is the acceleration signal in the time domain and s(t) is the displacement 
signal obtained by integration. 

Equation (27) shows that low-frequency noise contained in the acceleration signal 
will be amplified during the integration and cause a large error due to the  
amplitude-frequency characteristic 1/ω2. Therefore, the integration error in calculating 
the displacement from the acceleration response can be constrained by filtering the  
low-frequency noise from the observed signals. 

6 Numerical simulation 

To validate the feasibility of the proposed method, a simply supported beam model was 
built in ANSYS for FE model analysis. The beam element was selected as BEAM3, 
where each element node had three degrees of freedom (DOFs). The following 
parameters were chosen for the modeled bridge: EI = 2.87 × 109 N · m2, ρ = 2,303 kg/m 
and L = 25 m. The beam was divided into 100 elements, and the first three natural  
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frequencies of the bridge were determined to be f1 = 4.79 Hz, f2 = 19.18 Hz and f3 = 43.15 
Hz by calculation. Assuming that dual-axle time-varying loads move on the bridge deck, 
the expressions of the load are as follows: 

( )1( ) 28.75 1 0.25sin(2 )f t πt= − +  (28) 

( )2 ( ) 57.5 1 0.25sin(2 )f t πt= − +  (29) 

Three measuring points were assumed to be located at 1/4, 1/2, and 3/4 of the span along 
the beam. The acceleration and strain responses acquired from the measuring points were 
used for moving load identification, and the first three modes of the beam were of interest 
in the computation. The sampling frequency was set as 200 Hz to cover the first three 
modes as well as meet the requirement of the Nyquist-Shannon sampling theorem. Three 
load cases were designed and the moving load speeds were set as 10, 20, and 30 m/s. 

In practical application and bridge tests, the magnitude of moving loads cannot be 
obtained by direct measurement. To assess the identified results, FE software is used to 
generate the true output signal from the measuring points, and then, the loads obtained 
from the true and reconstructed signals are compared for error evaluation using  
equation (30). 

100%
ture recon

error
ture

f f
P

f

−
= ×


 (30) 

where Perror represents the relative percentage error and fture and frecon represent the loads 
identified from the true signal and reconstructed signal, respectively. 

6.1 Static displacement identification 

When the loads are moving across the bridge at a speed of 20 m/s, the dynamic responses 
of the three measuring points can be calculated directly from ANSYS, as shown in  
Figure 6. 

When a car is travelling on the beam at a low speed, noises caused by the 
environment and instrument during data acquisition may corrupt the signals. To simulate 
the influence of environment noise, 10 dB of white noise was added to the strain 
generated from the FE software. 

The dynamic strain signal was decomposed by the EMD method to acquire the 
corresponding IMFs at three points, one of which is illustrated in Figure 7, and the 
calculated static strains caused by the static loads at three points are respectively shown 
in Figure 8. As shown in the decomposed results, the EMD method decomposed the 
complex signal into multiple IMFs, where the low-frequency component IMF11 reflects 
the strain caused by static vehicle loads. 

The neutral axis is at the middle height of each beam section, the curvature of 
multiple points can be derived from the nodal strain responses according to equation (17), 
and the curvature function of the entire beam is obtained by the least-squares method. 
Then, the deflection curve can be obtained by integrating the curvature function twice, as 
shown in equation (18). The static displacements at points 1, 2, and 3 subjected to static 
forces are shown in Figure 9. 
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Figure 6 Moving load response at the instrument for v = 20 m/s, (a) acceleration signals  
(b) dynamic displacement signals (c) dynamic moment signals 

  
(a)     (b) 

 
(c) 

Figure 7 EMD decomposition of the strain signals at point 2 
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Figure 8 Strain signal decomposition, (a) at point 1 (b) at point 2 (c) at point 3 

  
(a)     (b) 

 
(c) 

Figure 9 Identification results of displacement caused by static loads 

 

6.2 Vibration displacement identification 

The true value and the value after adding 5 dB of white noise to the acceleration signals 
are shown in Figure 10. Since the signal after adding white noise contained many 
interference frequencies, the adaptive LMS algorithm was utilised to reduce the noise. 
The filter order was set as 100, and the step factor was set as 0.005. The frequency 
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domain characteristics of the filtered signal are shown in Figure 11, illustrating that the 
filtered signal is largely consistent with the true signal except for a small amount of noise 
mixed in the high-frequency components. 

Figure 10 (a) Acceleration signals with noise at point 1 (b) Fourier spectrum of acceleration with 
noise at point 1 

  
(a)     (b) 

Figure 11 (a) Denoised acceleration signals at point 1 (b) Fourier spectrum of denoised 
acceleration at point 1 

  
(a)     (b) 

The vibration displacement was calculated by integrating the acceleration twice in the 
frequency domain, which can ensure the reliability of the signal and achieve a high 
precision. There are two equilibrium conditions to meet the application: the velocity and 
displacement at the measuring points should be idealised as zero before the moving loads 
enter into the beam, and the beam vibration will be decay to the initial equilibrium state 
after the moving loads leave the beam. The two conditions can be used to eliminate the 
trend term in the integration process; thus, the vibration displacement is calculated as 
shown in Figure 12(a). 
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Figure 12 (a) Calculated vibration displacement signal at point 2 (b) reconstructed dynamic 
displacement signal at point 2 

  
(a)     (b) 

The reconstructed displacement signal shown in Figure 12(b) generally matched the true 
signal with a relative error of 2.5%, and deviations occurred mainly in the higher 
frequency range and at both ends of the beam. The deviations were caused by error 
accumulation in the integration process as well as the end effects, which refers to the 
divergence phenomenon in the signal decomposition, occurring during the EMD 
decomposition. When the deviation or uncertainty occurred in the calculation of 
maximum or minimum values of the signal, errors may arise in the calculated envelope 
curve and further lead to a divergence of the EMD results. 

6.3 Moving load identification 

The modal displacement can be obtained using the reconstructed displacement signal 
through equation (2), and the modal velocity and acceleration can be obtained via 
numerical differentiation. By substituting the modal displacement, velocity and 
acceleration into equation (3), the value of the moving load can be identified by the IMII 
method, while the measurements in time domain can be directly applied to TDM 
algorithm. Three cases, in which the load moved on the beam at speeds of 10, 20, and  
30 m/s, were considered for load identification of the front and rear axles, and the 
identified results are shown in Figure 13. In the figure, ‘true’ is the load identified by the 
TDM from the true dynamic displacement generated by the FE simulation, and ‘Recon1’ 
and ‘Recon2’ are the results identified by the IMII and TDM method based on the 
reconstructed displacement from polluted strain and acceleration responses, respectively. 

The time-varying loads can be identified by the IMII and TDM method when moving 
across the bridge and the results certify a high reliability for load identification from the 
reconstructed displacement, by which the noise corruption problem is overcome and the 
identification error is constrained within a reasonable range of 6%. 
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Figure 13 Identified results for the time-variable moving load, (a) front-axle at v1 = 10 m/s  
(b) rear-axle at v1 = 10 m/s (c) front-axle at v1 = 20 m/s (d) rear-axle at v1 = 20 m/s  
(e) front-axle at v1 = 30 m/s (f) rear-axle at v1 = 30 m/s 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 
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7 Laboratory experiment validation 

7.1 Experiment introduction 

A simply supported RC slab was constructed for the experiment to validate the proposed 
theory in application. The length of the slab was 3.6 m, and the width was 0.4 m with a 
thickness 0.055 m. The cross-section and reinforcement layout of the test specimen are 
shown in Figure 14(a). Two leading beams with a length of 0.5 m at both ends, which 
were utilised as the speed guiding way for the model car getting on and off the slab, are 
shown in Figure 14(b). 

Figure 14 (a) Reinforcement layout of the cross-section (b) Structural dimensions and 
instrumentation layout (see online version for colours) 

 
(a) 

 
(b) 

7.2 Structural dynamic test 

Before the moving load identification, a multi-reference impact test (MRIT) was 
conducted to obtain the modal parameters. Due to the limitations of equipment channels, 
the measurement points were divided into four testing cases by arranging four reference 
points, as shown in Figure 15. LMS Cadax-8 data acquisition was used to acquire the 
hammer impact force and acceleration signals. A sampling frequency of 2,048 Hz was 
selected to capture the impact force at high resolution in the time domain. Each point was 
hammered three times, and the complex mode indicator function (CMIF) was utilised in 
the modal analysis. The singular value curves of the frequency response functions (FRFs) 
produced by the CMIF method are shown in Figure 16, including four curves for each of 
the reference points. 

The FE model was established through Midas software to obtain analytical modal 
information, which was used to compare with the modal analysis results obtained by the 
CMIF method in Table 1. The measured and calculated dynamic characteristics are 
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similar; thus, the FE simulating structure is capable of reflecting the performance of the 
actual structure. 

Figure 15 Instrumentation layout of the modal test 

 

Figure 16 Mode extraction by the CMIF method (see online version for colours) 

 

Table 1 Dynamic test results obtained by the MRIT (see online version for colours) 

Mode 
FEM simulation  CMIF measurement 

Frequency (Hz) Mode shape  Frequency (Hz) Mode shape 
1 7.49 

 

 7.50 

 

2 29.98 

 

 30.25 

 
3 67.33 

 

 67.75 
 

4 81.53 

 

 82.01 
 

5 119.62 

 

 118.75 
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7.3 Moving load experiment 

The top of the leading beam was connected to the slab top, and the edge of the beam was 
very close to the edge of the slab without direct contact. The acceleration and dynamic 
strain were measured in the experiment, and 8 measurement points were setup on the 
structure along the longitudinal direction, as shown in Figure 17(a). According to the 
vehicle speed and loaded mass, 12 cases were scheduled in the experiment, as shown in 
Table 2. The cases included three sets of vehicle speeds, i.e., v1 = 0.12 m/s, v2 = 0.24 m/s, 
and v3 = 0.32 m/s, and four sets of vehicle loaded masses, i.e., m1 = 5 kg, m2 = 10 kg,  
m3 = 15 kg, and m4 = 20 kg. To verify the monitored dynamic displacement at point 4, a 
high-speed camera (SONY FDR-AX700) was used to accurately measure the dynamic 
displacement. The flexural stiffness of the bridge model is estimated to be 188.28 kN/m2 
by loading weights and monitoring the deflection. 
Table 2 Load cases of the moving load experiment 

Case Speed/(m/s) Mass/(kg) Case Speed/(m/s) Mass/(kg) 
1 0.12 5 7 0.12 15 
2 0.24 5 8 0.24 15 
3 0.32 5 9 0.32 15 
4 0.12 10 10 0.12 20 
5 0.24 10 11 0.24 20 
6 0.32 10 12 0.32 20 

Figure 17 (a) Instrumentation layout for data acquisition (b) Picture of the instrumentation  
(c) Moving load vehicle and target displacement (see online version for colours) 

 
(a) 

  
(b)     (c) 
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7.4 Experiment results 

According to the dynamic strain signals measured when the vehicle is travelling on the 
bridge, the raw signal contained a large amount of noise interference, and the  
high-frequency part was mainly composed of the vibration strains induced by the noise 
and inertial force. The static strain in the low-frequency domain and the dynamic strain in 
the high-frequency domain can be separated through EMD. For example, the 
decomposed results at instrumentation point #4 in case 4 is shown in Figure 18, in which 
the decomposed signal becomes smooth and the strain reaches the peak when the load 
passes the instrumentation point. The static strain obtained by the EMD method was used 
to derive the displacement responses caused by the static loads. After using the data 
acquired from eight strain sensors and calculating the curvature function by the iterative 
algorithm, the static displacement under the moving loads could be identified as shown in 
Figure 19. 

Figure 18 EMD of the strain signal at point #4 in case 4, (a) IMF signals (b) static strain 

 
(a) 

 
(b) 
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Figure 19 Identified static displacement results in case 4 

 

Figure 20 (a) Calculated vibration displacement at point #4 in case 4 (b) Different reconstructed 
displacements at different points in case 4 

  
(a)     (b) 

The identified vibration displacement was calculated from the acceleration signal 
according to the integration flowchart in Figure 5. Noise reduction was performed on the 
acquired signal using the LMS algorithm, in which the filter order was set as 100 and the 
step factor was set as 0.005. Then, the velocity and displacement were obtained by 
integrating the signal in the frequency domain via MATLAB. The calculated vibration 
displacement in case 4 is shown in Figure 20. By comparing the results in various cases, 
the model car moving at a low speed resulted in more obvious high-frequency vibrations 
of the displacement due to a longer duration on the bridge model than the high-speed 
model car. The reconstructed displacements obtained by combining the static 
displacement and vibration displacement are shown in Figure 20(b). 

A comparison between the reconstructed displacements and the displacements 
measured via a high-speed camera at point #4 is illustrated in Figure 21. The measured 
displacement and reconstructed displacement at point #4 fit well, and the errors at the 
peak values are less than 3% when the loads moving across the measuring point. The 
comparison results show that the vibration displacement was accurately restored by the 
integration of the acceleration signal in the frequency domain. The deflection matched 
the actual deformation, which indicated that it is capable of reaching the requirement of 
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the high accuracy measurement by using the strain values for structural curvature 
reconstruction. 

Figure 21 Comparison of the displacement at point #4 in case 4 

 

Figure 22 Moving load identification results, (a) case 1 (b) case 4 (c) case 8 (d) case 11 

 
(a) 

 
(b) 
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Figure 22 Moving load identification results, (a) case 1 (b) case 4 (c) case 8 (d) case 11 
(continued) 

 
(c) 

 
(d) 

Load identification was carried out with the reconstructed displacement under various 
cases, and a small portion of the identified results is shown in Figures 22 and 23, where 
‘IMII’ denotes the results using the IMII method with the reconstructed signals, 
‘TDM(1)’ presents the results using the TDM method with the reconstructed signals, 
while ‘TDM(2)’ presents the results using the traditional TDM method without the 
proposed signal reconstruction and the time-varying loads were identified from the 
dynamic strains filtered by a low-pass filter. Considering the mass of the entire model car 
and the loaded weights, the actual loads under cases 1, 4, 8 and 11 are identified as  
72.8 N, 122.8 N, 172.8 N and 222.8 N, respectively, which are consistent with the true 
values. The reconstructed displacement illustrates that the information regarding the 
single-axle load when moving across the measuring point cannot be adequately identified 
from the trend of the entire curve. A direct comparison of the identified results illustrates 
that both the IMII method and TDM are capable of estimating the moving axle loads 
accurately under different vehicle speed and mass cases after signal processing and 
optimisation proposed by the author, while the results by the traditional method, 
employing a low-pass filter for noise reduction, exhibits relatively large fluctuations and 
critical ill-posedness. Furthermore, the IMII computation required less time than the 
TDM and was more sensitive to interference noise. 
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Figure 23 Histogram of the moving load identification, (a) IMII method in case 1 (b) TDM in 
case 1 (c) IMII method in case 4 (d) TDM in case 4 (e) IMII method in case 8 (f) TDM 
in case 8 (g) IMII method in case 11 (h) TDM in case 11 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
(g)     (h) 
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8 Conclusions 

Moving load identification aims to resolve the inverse problems that occur when 
estimating wheel loads in motion from bridge responses. In this paper, a methodology 
was proposed to reduce the ill-conditioned problem and improve the accuracy of the 
identification by reconstructing the dynamic displacement of the bridge. The 
reconstructed displacement is a superposition of the static displacement acquired from the 
decomposed strain signal and the vibration displacement calculated by denoising the 
acceleration signal. The following conclusions can be drawn: 

1 By employing the measurements from the acceleration and strain sensors, the static 
and vibration displacements can be calculated to reconstruct the dynamic 
displacements for further moving load identification of the bridge. As indicated from 
the load identification results of the FE analysis and laboratory experiment, the 
reconstructed displacement signal can accurately identify the moving loads under 
different testing cases, which is effective for overcoming the ill-conditioned problem 
and achieving a high level of accuracy. 

2 The adaptive LMS algorithm for noise reduction can directly filter the noise through 
signal processing and improve the signal-to-noise ratio. However, the efficiency of 
noise reduction and the computation rate may be influenced by the convergence 
ratio. 

3 Since the low-frequency noise causes greater corruption on the observed acceleration 
signal during integration, integration of the denoised signal in the frequency domain 
can achieve better restoration of the vibration displacement than that in the time 
domain. Moreover, the trend generated in the integration can be eliminated by 
simulating it with the least squares method. 
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