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Abstract: The traditional impact test method needs a
large number of sensors deployed on the entire struc-
ture, which cannot meet the requirements of rapid bridge
testing. A new mobile impact test method is proposed by
sequentially testing the substructures then integrating the
test data of all substructures for flexibility identification of
the entire structure. The novelty of the proposed method
is that the quantum-inspired genetic algorithm (QIGA) is
proposed to improve computational efficiency by trans-
forming the scaling factor sign determination problem
to an optimization problem. Experimental example of
a steel–concrete composite slab and numerical example
of a three-span continuous rigid-frame bridge are stud-
ied which successfully verify the effectiveness of the pro-
posed method.

1 INTRODUCTION

Structural health monitoring (SHM) technology has
been widely utilized to identify structural character-
istics, and locate and quantify structural damages (Li
et al., 2006; Catbas et al., 2013; Amezquita-Sanchez and
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Adeli, 2014). As a widely used solution for SHM, ambi-
ent vibration testing, which adopts traffic flows and wind
loads etc. to be the natural excitation sources, has been
applied in many long-span bridges, such as the Vincent
Thomas Bridge (He et al., 2008), the Humber Bridge
(Brownjohn et al., 2010), and the Throgs Neck Bridge
(Zhang et al., 2013a). Besides, with the finite element
(FE) model-driven approach, ambient vibration test
data can be used to identify more detailed structural
parameters. However, how to decide the single domi-
nant model from many models with high plausibility and
uncertainty is still another vital problem (Zhang et al.,
2013b).

Multiple reference impact testing (MRIT) used a
hammer or other exciters to impact the bridge’s deck,
during which the impact force and the structural re-
sponse under the force are recorded for structural
identification (Brown and Witter, 2011). Catbas et al.
(2004) developed the complex mode indicator function
(CMIF) algorithm to process the impact test data and
applied it to an aged highway bridge. De Vitis et al.
(2013) proposed an impacting device for rapid struc-
tural identification of highway bridges. Zhang et al.
(2014) proved that the impact test method with col-
lecting force data has the advantage of identifying the
magnitudes of structural frequency response functions
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Fig. 1. Mobile impact testing with reference-free measurement: (a) the framework of the method and (b) the problem of the
method.

(FRFs), and which are necessary for structural flexibil-
ity identification. However, the limitation of the tradi-
tional impact test method lies in that it requires a large
number of sensors deployed on the entire structure,
which usually leads to expensive experimental costs.
To overcome the limitation, the idea of mobile impact
testing emerges naturally by dividing a structure into
substructures then sequentially performing the impact
test on substructures. Subsequently, the emerging prob-
lem is how to integrate the test data of substructures for
modal identification of the entire structure. Although
there are many decentralized modal identification al-
gorithms processing the ambient vibration data (Lynch,
2002; Sadhu et al., 2014; Marulanda et al., 2016), they
cannot be transplanted directly to solve the data inte-
gration problem of the mobile impact test method. To
address the above challenging problem, Zhang et al.
(2015) developed the interface measurement-based ap-
proach and the single reference-based approach to in-
tegrate all substructures’ vibration data for identifying
the entire structure’s flexibility matrix. The method of
mobile impact test with single-reference measurement
(Figure 1) not only increases one more sensor, but also
requires the extra labor to acquire the response of the
single reference node repetitively in all impact tests of
substructures especially when the reference node is far
away.

To achieve the purpose of rapid impact testing for
bridges, a mobile impact test method with reference-
free measurement is proposed by Zhang et al. (Guo
et al., 2018). As shown in Figure 1a, the structure is
divided into three substructures and the impact test
is independently conducted on each substructure one
by one. The FRFs of three substructures (H11, H22,

and H33) are estimated respectively using the recorded
input forces and accelerations, from which basic modal
parameters (system poles (λ1

r , λ2
r , and λ3

r ), modal scaling
factors (Q1

r , Q2
r , and Q3

r ), mode shapes (ψ1
r ,ψ2

r , andψ3
r ),

and modal participation factors (�1
r , �2

r , and �3
r ) of three

substructures and their modal flexibility matrices (f1
r , f2

r ,

and f3
r ) are identified respectively. However, because

impact testing of each substructure is independent, the

scaling factors of the substructure mode shapes in some
mode are not at a same scaling level. It is shown that
the sign factors, ηk

r , are still unknown so far though they
are either 1 or –1, which means that the orientation of
each substructure’s scaled mode shape has not yet been
determined. This phenomenon is shown in Sub 3 in
Figure 1b. Therefore, a method based on the principle
of minimum potential energy (PMPE) was proposed
to determine the signs by sorting all possible cases of
potential energy (PE) and finding the minimum one.

However, it is obvious that the computation effi-
ciency will be very low if enumerating all values of PE
when the scale of the question becomes large. Also,
due to the noise involved in the measurement, multi-
ple local minimum values even the ill-conditioned min-
imum that do not obey the continuity or basic physi-
cal laws will happen when the searching process of the
sign factors is carried out. To optimally improve the
testing efficiency and acquire the higher mode infor-
mation, the question of assembling substructures’ mode
shapes into the global mode shapes of the entire struc-
ture is transformed into an optimization problem in this
article, which falls into the NP-hard binary optimiza-
tion paradigm. Thus, swarm and evolutionary compu-
tations based algorithms to solve the optimization prob-
lem are required. There are abundant applications of
swarm and evolutionary computations in civil engineer-
ing, such as Genetic Algorithm (Han and Kim, 2000;
Jiang and Adeli, 2008; Sgambi et al., 2012; Kociecki and
Adeli, 2014; Cha and Buyukozturk, 2015; Mencia et al.,
2016), Ant Colony Algorithm (Putha et al., 2012), and
Particle Swarm Optimization (Shabbir and Omenzetter,
2015). In this article, an improved quantum-inspired ge-
netic algorithm (QIGA) is developed because of its ex-
cellent performance.

The structure of the article is as follows: in Section 2,
the framework of the improved QIGA with dynamic
quantum rotation gate and adaptive crossover (muta-
tion) probability rate is developed to solve the scaling
factor sign determination problem. In Sections 3 and
4, the experimental example of a steel–concrete com-
posite slab and the numerical example of a three-span
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continuous rigid-frame bridge are studied respectively
to verify the effectiveness of the proposed method.
Finally, conclusions are drawn.

2 FRAMEWORK OF THE QIGA-BASED
ALGORITHM METHOD FOR SOLVING THE

OPTIMIZATION PROBLEM

As shown in Figure 2, the strategy of the traditional
method is sorting all possible cases of potential energy
and finding the minimum one, which means that the
computation efficiency will be very low when the case
number becomes large. Therefore, a modified QIGA is
developed to solve the optimization problem.

The QIGA is a probabilistic evolutionary algorithm
that embeds the quantum computation into the classical
genetic algorithm (GA). The hybrid strategy enables
this algorithm not only to share with some common
operations like crossover and mutation in classical
GA, but also to have quantum characteristics such as
quantum rotation gate and measurement of collapse.
In QIGA, the basic unit is the quantum bit (Q-bit).
It is usually expressed with [α β]T or the Bra-Ket
notation |ψ〉 = α|0〉 + β|1〉, in which α2 and β2 are the
probability of appearing in the state 0 and the state
1 respectively and they follow the principle of unit
normalization α2 + β2 = 1. The position represented
by a Q-bit may locate in the state 0, the state 1, or in
a linear superposition of both, which is different from
classical state. The state transition can be achieved by
quantum rotation gate that is defined as follows:

U (�θ) =
[

cos (�θ) − sin (�θ)

sin (�θ) cos (�θ)

]
,

[
α′

β ′

]

= U (�θ)

[
α

β

]
(1)

where [α′ β ′]T is the Q-bit after updating; U(�θ)
is the rotation gate and correspondingly �θ is the
rotation angle, whose two attributes, size and sign, are
usually determined by an adjustment strategy designed
in advance (Han and Kim, 2000).

the optimal solution
Cases Number

PE

not the optimal solution

min(PE) of the enumeration method min(PE, rjθ ) of the 
QIGA-based method

Fig. 2. Overview of the proposed method.

For the specific optimization problem studied in
this article, the first focus is to design the encoding
scheme for its variables, the undetermined sign factors,
to solve them using QIGA. Owing to the number of
substructures and mode orders are m and N respec-
tively, so there are N(m − 1) sign factors. Therefore,
the length of the encoded quantum chromosome is
N(m − 1). The matrix form of the sign factors ηr is not
suitable for encoding, and hence they are rearranged as
the following row vector:[

η1
1 · · · ηm−1

1︸ ︷︷ ︸
r=1

· · · η1
r · · · ηm−1

r︸ ︷︷ ︸
r=r

· · · η1
N · · · ηm−1

N︸ ︷︷ ︸
r=N

]

(2)

Correspondingly, the encoding for the quantum chro-
mosome should have the same sequence as following:⎡

⎢⎣
α1

1 · · ·αm−1
1

β1
1 · · ·βm−1

1︸ ︷︷ ︸
r=1

· · · α
1
r · · ·αm−1

r

β1
r · · ·βm−1

r︸ ︷︷ ︸
r=r

· · · α
1
N · · ·αm−1

N

β1
N · · ·βm−1

N︸ ︷︷ ︸
r=N

⎤
⎥⎦ (3)

From Equations (2) and (3), the single Q-bit
[αk

r βk
r ]T represents the state of sign factor ηk

r , in
which (αk

r )2 specifies the probability of ηk
r = 1 and (βk

r )2

specifies the probability of ηk
r = −1. Adopting this en-

coding scheme for the optimization problem, the quan-
tum chromosome can be updated by using classical evo-
lutionary operators such as crossover and mutation as
well as the quantum rotation gate applied on the sin-
gle Q-bit. Thus, the whole population can rapidly evolve
with cyclic iterations.

It is worth mentioning that important parameters in-
cluding the rotation angle, the probabilities of crossover
and mutation greatly influence the performance of the
QIGA. To improve the computational efficiency of the
optimization problem, the following works are how
to design the dynamic rotation angle, the adaptive
crossover and mutation probabilities.

2.1 The dynamic quantum rotation gate

For conventional genetic quantum algorithm, the rota-
tion angle�θ is a constant, which reduces the possibility
to escape from local optima. To overcome this short-
coming, a dynamic rotation angle is designed according
to the pattern shown in Figure 3.

It can be seen that this strategy of dynamic rotation
angle is able to change dynamically with the fitness
of the individuals. Mathematically, if an individual’s
encoding is far away from the best one, a relative large
rotation angle will work to search the optima for the
objective function at a large stride on the whole search
region. By contrast, when an individual’s encoding
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Fig. 3. The dynamic rotation angle line.

approaches to the best one, a relative small rotation
angle is needed to carefully search the local optimal
region. The following specific formula just matches with
the strategy of the proposed dynamic rotation angle.

�θi = a + b × sin (c + e × di ) (4)

where a = �θmax +�θmin
2 , b = −�θmax −�θmin

2 and
c = −π

2
(dmax +dmin)
(dmax −dmin) and e = π

dmax −dmin
; �θmax and �θmin

are the upper and the lower limits of the dynamic
quantum rotation angle, respectively. In this arti-
cle, �θmax = 0.05π and �θmin = 0.001π are used;
di = 1 − hi/L , where hi is the Hamming distance
between the genes of the individual and the genes of
the best one; that is to say, the number of different
values between two binary strings at the same bit. L is
the length of the individual chromosome. dmax and dmin

are the maximum and the minimum values among all
di , respectively.

2.2 The adaptive crossover (mutation) strategy

Although there are some methods to design the adap-
tive crossover and mutation probabilities (Beg and Is-

lam, 2016), the difference between the traditional and
the proposed strategy are illustrated in Figure 4.

It can be clearly seen that the proposed adaptive op-
erators in this article are not only in response to the
fitness values of the solutions adaptively, but also have
the exponential smooth transition properties. The adap-
tive crossover strategy (Figure 4a) can provide the pos-
sibility of the diversity of the population during the
individual approaches to the best individual in the pop-
ulation. Also the adaptive mutation strategy (Figure 4b)
can provide the possibility to jump out of the local op-
timum such that the population can evolve to a better
state. The proposed adaptive crossover strategy is de-
fined as

pc,i =

⎧⎪⎨
⎪⎩

pc,max, fi < fmean

pc,max − pc,max − pc,min

tanh (ρ)
× tanh

(
ρ ( fi − fmean)
fmax − fmean

)
, fi ≥ fmean

(5)

where pc,max and pc,min are the upper and the lower lim-
its of the crossover probability respectively, pc,max = 0.9
and pc,min = 0.5 are used in this article; fi , fmean and
fmax are the fitness value of the population respectively;
tanh(·) is the Hyperbolic Tangent Function (tanh(x) =
ex −e−x

ex +e−x ), ρ(ρ > 0) is an accelerating factor to regulate the
evolution speed of the population, and ρ = 5 is used in
this article. It should be noted that a too large value
of ρ is prohibited because it may cause the population
to evolve in a local optima prematurely. The proposed
adaptive mutation strategy is given as

pm,i =
⎧⎨
⎩

pm,max, fi < fmean

pm,min + pm,max − pm,min

tanh (ρ)
× tanh

(
ρ ( fmax − fi )
fmax − fmean

)
, fi ≥ fmean

(6)

where pm,max and pm,min are the upper and the lower
limits of the mutation probability respectively, pm,max =
0.2 and pm,min= 0.01 are used in this article. The factor

(a) (b)

Fig. 4. The variation operators with different bending parameter ρ: (a) the crossover strategy and (b) the mutation strategy.
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ρ in Equation (6) has the same meaning and value as it
is in Equation (5).

2.3 The fitness function

It is well known that the accurate displacement
of a structure induced by static forces will mini-
mize the structure’s potential energy, which can be
calculated by,

πp(ηr ) = 1
2

N∑
r=1

[
(FT Trηrνrψr )2

(
Qmaster

r

λmaster
r

+ Qmaster∗
r

λmaster∗
r

)]

(7)

where FT ={ F1T · · · FmT }T ∈ R
N0×1 is the static

force vector applied on each output node of the entire
structure and correspondingly; Fm ∈ R

N m
0 ×1 is the one

applied on the mth substructure; ψr ∈ C
N0×1 is the r th

inconsistent mode shape of the entire structure; Tr =

ηrνr =

⎡
⎢⎣
ν1

r IN 1
0

. . .
νm

r IN m
0

⎤
⎥⎦
⎡
⎢⎣
η1

r IN 1
0

. . .
ηm

r IN m
0

⎤
⎥⎦ is

the transfer matrix, where IN m
0

∈ R
N m

0 ×N m
0 is an identity

matrix, νm
r = √

Qm
r /Qmaster

r is the mth substructure’s
scaling magnitudes which can be calculated; Qmaster

r
and λmaster

r are the r th modal scaling factor and the r th
system pole of master substructure respectively; the
symbol “*” denotes complex conjugate. It is seen that
the sign factors can be determined by minimizing the
structure’s potential energy from Equation (7).

Consider the higher modes have little influence on
the potential energy and the minimum potential energy
cannot guarantee the correctness of the automatic de-
termination of the sign factors in higher modes. The
orthogonality of mode shapes is used as constrained
conditions of the optimization problem. Mode shapes

have the following M-orthogonal: ψ̃T
r Mψ̃ j {�= 0, r = j

= 0, r �= j
,

where M is the mass matrix. Assuming the mass
distribution is uniform, it can be simplified as:

ψ̃T
r ψ̃ j {�= 0, r = j

= 0, r �= j
. The orthogonal angle between the

vectors ψ̃r and ψ̃ j is defined as

θr j= arccos

( ∣∣ψ̃T
r ψ̃ j

∣∣∥∥ψ̃r

∥∥ ∥∥ψ̃ j

∥∥
)

(r �= j) (8)

where ‖ψ̃r‖ is the 
2 norm of the vector ψ̃r ; the notation
| · | represents the absolute value of variable. The or-
thogonal angle θr j can be used to measure the degree of
orthogonality between two different assembled global
mode shapes. Therefore, the following constraint condi-
tions are designed for the optimization problem defined

in Equation (7) to distinguish the feasible region from
infeasible one,

ϑr = min
j �=r

(θr j ) ≥ ϑmin

μr = 1
N−1

N∑
j = 1
j �= r

θr j ≥ μmin

σr =
√√√√√√

1
N−1

N∑
j = 1
j �= r

(θr j − μr )2 ≤ σmax

(9)

where ϑr , μr , and σr are the minimum orthogonal angle,
the mean value and the standard deviation of orthogo-
nal angle for the r th mode, respectively. ϑmin, μmin, and
σmax are their corresponding threshold values provided
in advance by expertise, and μmin should be slightly
larger than ϑmin. In this article, they are set to be 70◦,
85◦, and 10◦, respectively. But how to use penalty tech-
niques to transform the constraint conditions into an un-
constrained optimization problem is still an essential is-
sue to design a reasonable fitness function. This article
proposes a fitness function to determine the sign factors
by adopting penalty techniques.

According to the constraint conditions in Equation
(9), define the following three penalty factors:

p1 =
N∑

r=1

[sin (ϑr )]ζr

2r

p2 =
N∑

r=1

[sin (μr )]ζr

2r

p3 =
N∑

r=1

[cos (σr )]ζr

2r

(10)

where ζr is the factor to control the degree of punish-
ment and it has the following values:

ζr =
{

1 (ϑr ≥ ϑmin, μr ≥ μmin, σr ≤ σmax)

constant > 1else
(11)

It is obvious that the three penalty factors, p1, p2, and
p3 are less than 1. But for the points of the feasible re-
gion, their orthogonal angles will be approximately per-
pendicular; so the three penalty factors will be close to 1.
In contrast, for the points of the infeasible region, their
orthogonal angles will be far away from perpendicular;
thus the three penalty factors will be correspondingly
far away from 1. Through this strategy, the feasible and
infeasible regions can be discriminated to some extent.
Due to the value of potential energy πp(ηr ) is usually
a negative quantity and yet the fitness value should be
better positive, the fitness function is defined as follows:

F(ηr ) = −p1 p2 p3πp (ηr ) (12)
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Input the modal parameters of each substructure

( master master, , ,k k
r r r rQ Q λψ )

Initialize the quantum population: 0Q t

Adaptive crossover strategy (Eq. 5)
Adaptive mutation strategy (Eq. 6)

Dynamic quantum rotation gate (Eq. 4)
Quantum measurement of collapse

Quantum evaluation (Eq. 12)
Update the quantum population

Stop Condition

Output the globally optimal solution: rη

N

Y

( )

Fig. 5. Flowchart of the proposed optimization algorithm
(QIGA).

2.4 The process of the QIGA-based optimization
algorithm

As shown in Figure 5, the general framework of the pro-
posed QIGA method is given. In the following, the basic
steps of the proposed method are introduced.

Step 1. Input of the modal parameters of each sub-
structure, such as the mode shape ψk

r and
the modal scaling factor Qk

r of the kth sub-
structure, the modal scaling factor Qmaster

r

and the system poles λmaster
r of the master

substructure.
Step 2. Initialization of the quantum population,

that is, an initial population of quantum in-
dividuals is randomly generated. Then, each
individual is measured and the best candi-
date individual together with its fitness value
is recorded for the use of iteration.

Step 3. Quantum population evolves. The adaptive
crossover and mutation operators are con-
ducted on the parent generation in turn to pro-
duce the offspring. It should be noted that the
mutation operator is equivalent to implement-
ing a quantum non-gate on a Q-bit.

Step 4. The dynamic quantum rotation gate is applied
to the offspring of the quantum population.
After that, a new quantum population is gen-
erated, and then each new individual is col-
lapsed to a particular binary string by mea-
surement. It should be noted that the binary
string consists of two states, 1 and –1 instead
of 1 and 0.

Step 5. These binary strings are evaluated by using
the fitness function, meanwhile, replacing the
old best candidate and its fitness value with
the new ones according to the elitist strategy.
Then, the parent generation is updated by re-
placing it with the new population generated
from the operation of applied quantum rota-
tion gate.

Step 6. Steps 4–6 are iteratively executed until the
stop condition of the maximum generation set
in advance reaches. Finally, the correct sign
factors can be extracted from the best candi-
date of the last generation.

Fig. 6. Steel–concrete composite slab model: (a) dimension and instrumentation plan; (b) cross-section detail; and (c)
photograph.
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(a) (b)

Fig. 7. Identified frequency and damping ratios.

Table 1
Magnitude adjustment factor and sign factor of the

experimental example

Mode no. ν2
r η2

r MAC Mode no. ν2
r η2

r MAC

1 0.84 1 0.9993 7 0.87 1 0.9934
2 1.13 1 0.9986 8 1.18 1 0.9992
3 −1.05 −1 0.9856 9 1.13 1 0.9993
4 0.96 1 0.9988 10 0.88 1 0.9957
5 −1.10 −1 0.9714 11 −0.91 −1 0.9878
6 −1.07 −1 0.9857 – – – –

3 EXPERIMENTAL EXAMPLE OF A
STEEL–CONCRETE COMPOSITE SLAB

To verify the effectiveness of the proposed method, the
mobile impact test of a steel–concrete composite bridge
model as shown in Figure 6 was performed. The model
has an overall length of 4.0 m and a width of 2.05 m.
Three I-shaped Q235 steel girders were constructed as
longitudinal beams, connecting with concrete deck by
cheese head studs. The structure was simply supported
by three rolling supports (nodes 1, 10, 19) and three
fixed supports (nodes 9, 18, 27). A PCB medium size
impact hammer was used to impact the structure. Fif-

teen ICP accelerometers (0.5�7,000 Hz, acceleration
< 100 g) were mounted on the nodes of the slab, and a
DP730 data acquisition system was used to acquire the
impact test data.

As shown in Figure 6a, the steel–concrete compos-
ite bridge model was subdivided into two substructures.
The hammer impact test was sequentially performed on
substructures. Fourteen accelerometers were deployed
on all nodes of Sub 1, and the impacting forces were
applied to all nodes in turn except the rolling support-
ing nodes 1, 10, and 19. Sub 2 was tested by using thir-
teen accelerometers deployed on all nodes within this
substructure and all nodes except the fixed supporting
nodes 9, 18, and 27 were impacted. The technologies of
bandwidth filtering and windowing in time domain were
used to reduce noises and leakages of the collected im-
pacting forces and accelerations. The CMIF method was
employed to process the impact test data for structural
modal parameter identification. The identified frequen-
cies and damping ratios in the first eleven modes are
shown in Figure 7.

Modal scaling factors, mode shapes and modal
participation factors of the two substructures were
identified. Choosing Sub 1 as the master substructure,
for the first eleven modes identified, there are eleven

22
11 10.84, rr ην == ==

22
r=2r=2 ην = −1=1.13,

Fig. 8. The process of assembling mode shapes: (a) the first mode and (b) the second mode.
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Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

Fig. 9. The assembled global mode shapes of the ten modes.

Fig. 10. The identified full modal flexibility matrix of the
experimental example.

Fig. 11. The predicted defelction.

sign factors needed to be determined. The magnitude
adjustment factors and the sign factors of the eleven
modes of Sub 2 are listed in Table 1. Modal Assurance
Criterion (MAC) values calculated by the assembled
global mode shapes and those from the traditional im-
pact test method are also provided in Table 1. Figure 8
shows the process of assembling substructures’ mode

Fig. 12. The total time of the enumeration method and the
proposed QIGA method.

shapes of the first and the second mode. The assem-
bled global mode shapes of the ten modes are shown in
Figure 9.

The full modal flexibility matrix of the steel–concrete
composite slab model was identified as shown in
Figure 10. Figure 11 provides the predicted deflections
from the identified flexibility when the uniform loads of
1.0 KN were applied to all nodes of the structure. The
computational time of the enumeration method and the
proposed QIGA method to solve the optimization
problem are compared in Figure 12, which illus-
trates the high efficiency of the proposed QIGA
method.

The performance of the QIGA is further compared
with that of Quantum Genetic Algorithm (QGA) and
GA to verify its effectiveness. In the comparison, 100 in-
dependent runs were executed for each algorithm. The
probability of crossover and mutation were set to be
0.8 and 0.05 respectively in the GA method. The tra-
ditional constant quantum rotation angle strategy was
used in the QGA method, in which the rotation angle is
�θ = 0.01π . Figure 13 shows the evolving process of the
three algorithms within 100 generations. The results of
computations from the proposed QIGA, QGA, and GA
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(a) (b) 

Fig. 13. Comparison of the maximum fitness values for the QIGA, QGA, and GA with: (a) population size of 10 and (b)
population size of 50.

Table 2
Results comparison from the QIGA, QGA, and GA methods

Fitness value

Run times Test case Algorithm Best Worst Mean Accuracy (%) Evolution no.

100 Case 1 GA 68.52 47.88 65.61 59 40
10 individuals QGA 68.52 68.52 68.52 100 28

100 generations QIGA 68.52 68.52 68.52 100 11
Case 2 GA 68.52 68.52 68 97 18

50 individuals QGA 68.52 68.52 68.52 100 10
100 generations QIGA 68.52 68.52 68.52 100 5

(b) 

(a) 

Input/output node Output node 

1 3 5 7 9 11 13 15 52 54 56 62 19 23 25 29 33 37 41 45 48 

Sub 1 Sub 2 Sub 3 Sub 4 

Fig. 14. The studied bridge (a) elevation view and (b) mobile impact test with reference-free measurement.

are shown in Table 2, in which the column of “Evolu-
tion no.” denotes the average generation converging to
the global optimum in the evolving process. It is clearly
seen from Table 2 that the QIGA converges to the
global optimum with a more fast speed than QGA and
GA.

4 NUMERICAL EXAMPLE OF A THREE-SPAN
CONTINUOUS RIGID-FRAME BRIDGE

The finite element model of a three-span continuous
rigid-frame bridge (Figure 14) was studied to further
verify the effectiveness of the proposed method. The
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Table 3
Magnitude adjustment factor and sign factor of the numerical example

The scaling factor The scaling factor sign

Mode no. ν1
r ν3

r ν4
r η1

r η3
r η4

r MAC

1 0.25 0.92 0.23 1 1 −1 0.9984
2 1.15 1.01 1.20 1 −1 1 0.9997
3 1.80 0.79 1.90 1 −1 −1 0.9991
4 0.69 1.03 0.72 −1 −1 −1 0.9996
5 0.33 0.85 0.31 −1 −1 −1 0.9980
6 1.40 1.04 1.41 1 1 1 0.9987
7 0.63 1.03 0.64 −1 1 −1 0.9995

Mode 1(0.655HZ) Mode 2(1.130HZ) Mode 3(1.409HZ) Mode 4(1.728HZ)

Mode 5(2.739HZ) Mode 6(3.821HZ) Mode 7(4.547HZ)
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Fig. 15. Identified mode shape of the first seven modes.

bridge has an overall length of 548 m, with the length of
the mid-span of 268 m and the length of two side spans
of 140 m. The bridge deck is a two-way 6-lane road with
a width of 34 m. The elasticity modulus, density, and
Poisson ratio are 3.45E10 N/mm2, 2,500 kg/m3, and 0.2,
respectively in this model. The finite element modeling
of the bridge was constructed through the commercial
ANSYS software.

The bridge was subdivided into four substructures as
shown in Figure 14b, and the mobile impact test data
were simulated through the dynamic analysis of the fi-
nite element model. Random white noise of 5% was
added into the impacting forces and the accelerations
to simulate observation noise. Because the node num-
ber of Sub 2 is larger than that of other substructures,
it is chosen as the master substructure. The magnitude
adjustment factors and the sign factors of Subs 1, 3, and
4 were calculated and their results are given in Table 3.

The assembled mode shapes of the structure of the
first seven modes are shown in Figure 15. The full
modal flexibility matrix of this structure was integrated
as shown in Figure 16. To verify the accuracy of this flex-
ibility matrix, applying a uniform load to the bridge in

Fig. 16. The identified full modal flexibility matrix of the
numerical example.

the form of every other node on the right-hand side of
the bridge, this can lead to the prediction of the bridge’s
deflections by using the flexibility matrix as shown in
Figure 17. It can draw the conclusion that only using
modal parameters of lower orders cannot guarantee the
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Fig. 17. The predicted deflections and the model truncation
effects.

Fig. 18. The total time of the enumeration method and the
proposed method.

accuracy of the integrated flexibility matrix, from the
obvious difference between the deflections predicted
using the modal parameters of the first three and the
first seven orders.

Figure 18 shows the time cost of the enumeration
method and the proposed QIGA method used for
searching the twenty-first correct sign factors. It is
seen that when the number of substructures becomes
too large, the computational time of the enumeration
method greatly increases with exponential rule, while
the one of the QIGA method keeps relatively sta-
ble, which demonstrates the excellent efficiency of the
QIGA method.

6 CONCLUSIONS

This article presents a new mobile impact testing
method for structural flexibility identification, in which
the key problem of determining the sign factor is trans-
formed to a constrained optimization problem and it is
solved by the developed QIGA method.

The QIGA has been improved by developing the
adaptive crossover (mutation) strategy, dynamic quan-
tum rotation gate. Compared to the traditional GA and
QGA, the developed QIGA method can explore the
search space with a smaller number of individuals and
exploit the search space for a global solution within a
short span of time, thus it is proved to be much more
efficient for determining the sign factors.

An experimental example of a steel–concrete com-
posite slab and numerical example of a three-span
continuous rigid-frame bridge have been studied, and
the results successfully verified the effectiveness of the
proposed method by comparing with that of the tradi-
tional MRIT method for structural flexibility identifica-
tion and deflection prediction. In addition, it should be
noted that the proposed method is developed on the as-
sumption that the structure has a uniform mass matrix.
Whether it can be extended to inconsistent mass case
will be studied in future work.
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