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A B S T R A C T

Mobile impact testing of a simply-supported steel stringer bridge is investigated for efficient structural flexibility
identification. The classical impact test method requires a number of sensors deployed on the entire structure; in
contrast, this paper proposes a novel mobile impact test method that sequentially measures segments of the
entire structure with much fewer sensors. The advantage of the proposed approach lies in that it greatly reduces
the experimental cost, and it can output the same results of the entire structure’s flexibility matrix as the tra-
ditional impact test method. In the proposed method, the data processing algorithm is developed to integrate the
measurements of all segments for identifying the entire structure’s flexibility matrix. Especially, it does not need
any transitional nodes to be references by adopting the principle of minimum potential energy, which greatly
improves the efficiency of mobile impact testing. Application of the proposed approach to a simply-supported
steel stringer bridge successfully verifies its feasibility and efficiency.

1. Introduction

Ambient vibration test using traffic flows and wind loads to excite
structures are convenient to perform [1–8], which mainly output pre-
liminary modal parameters (natural frequencies, damping and mode
shapes). However, it is still difficult to effectively identify the location
and quantify the degree of damages in civil structures even though a
lots of damage detection methods have been developed by using the
modal parameters identified from ambient vibration data [9,10]. This is
mainly due to the large spatial extent of civil structures, fair amount of
obscure construction details and a large number of structural elements
interacting with each other in a way that is currently not fully quan-
tifiable [11]. Another promising way for structural vibration test is the
controllable impact test. Brown et al. [12] and Zhou et al. [13] used the
sledge hammer to impact the bridge, during which the input force and
structural responses are recorded to identify structural scaling factors
and the flexibility matrix. The identified flexibility results are useful for
structural performance evaluation as shown in Fig. 1. First, it is useful
to investigate force-deflection information of the studied bridge.
Structural deflections can be predicted by multiplying the static load by
the identified flexibility matrix. They are comparable with the mea-
sured ones from static track load test which is an important experiment

tool for evaluating the load carrying capacity of short/middle-span
bridges [13,14]. Second, the identified flexibility can be used to de-
velop structural damage indexes, which has been proved to be more
effective for structural damage detection than common frequency or
mode shape based damage indexes [15].

The impact test has the merit to identify the scaling factor and the
flexibility as described above. It has not been widely applied in en-
gineering practices because it is not as convenient as ambient vibration
test to perform. Inspired by the idea of bridge rapid testing developed
recently [16–18], researchers have developed onboard impacting de-
vices to improve the efficiency of impact test [15,19]. On the other
hand, mobile impact testing which divides the whole structure into
substructures for consecutive testing has been developed to further
speed up the impact test. Traditional impact test requires a number of
sensors deployed on the entire structure (Fig. 1), which induces high
hardware cost and experimental time. The strategy of mobile testing
perform the impact test of the substructure one by one as shown in
Fig. 2, thus the number of required sensors are greatly reduced. How-
ever, the arising question is how to integrate the test data of sub-
structure to identify the mode shapes and the flexibility of the entire
structure. Zhang et al. [20] first developed a mobile impact testing
method as shown in Fig. 2(a), in which the interface nodes of two

https://doi.org/10.1016/j.engstruct.2017.12.020
Received 5 March 2017; Received in revised form 9 December 2017; Accepted 12 December 2017

⁎ Corresponding author.
E-mail address: jian@seu.edu.cn (J. Zhang).

Engineering Structures 159 (2018) 66–74

Available online 30 December 2017
0141-0296/ © 2017 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01410296
https://www.elsevier.com/locate/engstruct
https://doi.org/10.1016/j.engstruct.2017.12.020
https://doi.org/10.1016/j.engstruct.2017.12.020
mailto:jian@seu.edu.cn
https://doi.org/10.1016/j.engstruct.2017.12.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engstruct.2017.12.020&domain=pdf


adjacent substructures are required to be taken as reference nodes in
order to integrate the mobile test data. It should be noted that the ef-
ficiency of the mobile test will be decreased with the increasing number
of reference nodes, because the responses of those reference nodes are
required to be repetitively measured during the impact tests of all
substructures. To further speed up the mobile impact test, Zhang et al.
[21] developed a mobile impact test method as shown in Fig. 2(b),
which only requires a single reference node. In this article, the mobile
impact test without requiring the reference node as shown in Fig. 2(c)
will be proposed, in which a new idea of searching the minimum po-
tential energy (PE) of the structure is proposed to integrate the test data
of substructures. Evidently the reference-free strategy is the most effi-
cient way for engineering application.

2. Methodology of the reference-free mobile impact test

2.1. Basic idea

By taking a seven degree-of-freedom (DOF) beam model (Fig. 3) as
the example for illustration of the mobile impact test, the structure is
independently divided into three substructures which will be tested one
by one in the proposed method. Because there are no reference nodes
required in the proposed test scheme, it greatly increase the test speed,
but the challenging problem arising is that how the substructures’ data

are integrated for identification of the entire structure.
For the Sub A in Fig. 3, the FRF �∈ ×H ω( ) N NAA o

A
i
A are estimated

from the impact test data, where the symbol “�” denotes the sets of
complex numbers, and No

A and Ni
A are the number of output and input

nodes of Sub A respectively. Directly integrating the estimated FRFs of
Sub A, Sub B and Sub C leads to a sparse FRF matrix of the entire
structure H ω( )ABC and correspondingly the sparse structural flexibility
matrix can be identified, i.e., all elements locating on the non-diagonal
regions of the matrix still unknown. The proposed data processing
strategy aims to identify the full matrix of the entire structure f ABC as
illustrated in Fig. 3, in which �∈ ×f AA N No

A
o
A
is the flexibility matrix of

Sub A and the symbol “�” denotes the sets of real numbers.

2.2. Difficulty to assemble substructure mode shapes

Modal parameters of three substructures in Fig. 3 are identified. The
identified r-th frequency ωr , damping ratio ξr and system pole

= − + −λ ξ ω jω ξ1r r r r r
2 of the three substructures are close. Other

identified modal parameters include modal scaling factors, mode
shapes and modal participation factors, which are denoted by

ϕ LQ{ , , }r
A

r
A

r
A , ϕ LQ{ , , }r

B
r
B

r
B and ϕ LQ{ , , }r

C
r
C

r
C for the three substructures re-

spectively. It is worth noting that the estimated mode shapes of the
three substructures do not have the same scaling level because they are
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tested independently. That is to say, their modal scaling factors are
different, ≠ ≠Q Q Qr

A
r
B

r
C , thus the three substructures’ mode shapes

cannot be concatenated directly to produce the global mode shape of
the entire structure (Fig. 4(a)) for full flexibility matrix identification.
Thus the work adjusting the magnitudes (Fig. 4(b)) and the signs
(Fig. 4(c)) of substructures’ mode shapes to be consistent has to be
performed.

3. Theory development

3.1. Magnitude scaling

Sub A is taken as the master substructure. Correspondingly, Sub B
and Sub C are the subordinate substructures. In order to revise the
mode shape of Sub B such that they have the same modal scaling factor
(i.e. =∼Q Qr

B
r
A), an adjusting factor αr

B is used to adjust the mode shape
ϕr

B to be =∼ϕ ϕαr
B

r
B

r
B , and an another adjusting factor βr

B is employed to

adjust the modal participation factor Lr
B to be =∼L Lβr

B
r
B

r
B . Note that

the adjusting factors αr
B and βr

B are real values.
The magnitudes of the two unknown adjusting factors αr

B and βr
B

can be solved by using identified modal parameters. The detailed de-
rivation process please refers to [21]. However, their signs are still
unknown, which means that the orientations of substructures’ mode
shapes are still undetermined as illustrated in Fig. 4(c). Tentatively
defining ηr

B as the undetermined sign factor (i.e., = −η 1 or 1r
B ) of the

r -th mode, αr
B and βr

B can be rewritten as follows.

= =α η
Q
Q

β η
Q
Q

,r
B

r
B r

B

r
A r

B
r
B r

A

r
B (1)

According to the rotation rule, the adjusting factor, αr
C and βr

C, of
the r -th mode of Sub C can be obtained easily. The process of scaling the
mode shapes of subordinate substructures is illustrated in Step 3 of
Fig. 5. The global mode shape ϕr and the global modal participation
factor Lr after the adjusting operation completes can be obtained as

follows:
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(2)

If the sign factors ηr
B and ηr

C in Eq. (2) kwnon, the modal parameters
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Fig. 3. Mobile impact testing with reference-free
measurement.
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Fig. 4. Mode shapes integration: (a) The structure
mode shape; (b) Magnitude scaling; (c) Sign adjust-
ment.
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of the entire structure terming as ϕ Lλ Q{ , , , }r rr r can be achieved, among
which the system poles and the modal scaling factors of the entire
structure utilize λr

A and Qr
A of the master substructure. The flexibility

matrix is written as shown below [21]:

∑ ⎜ ⎟= ⎛
⎝ −

+
−

⎞
⎠=

∗ ∗ ∗

∗f
ϕ ϕ ϕ ϕ

η η
Q

λ
Q

λ
( , )

( ) ( )r r r r
r
B

r
C

r

m
r

r

r

r1

T T

(3)

where m is the mode number. Namely, the flexibility matrix is re-
presented as a function with respect to ηr

B and ηr
C because they are

unknown so far.

3.2. Sign factor determination by utilizing PMPE

For elastic bodies in equilibrium, real deformation occurred mini-
mizes the potential energy of the object, which is the principle of
minimum potential energy (PMPE) [22]. The flexibility matrix
f η η( , )r

B
r
C calculated by Eq. (3) through any combinations of the sign

factors ηr
B and ηr

C can be used to predict structural displacement vector
u η η( , )r

B
r
C under the load vector F:

=u f Fη η η η( , ) ( , )r
B

r
C

r
B

r
C (4)

Because different combinations of sign factors lead to different
displacement predictions, the potential energies of the structure cal-
culated by those predicted displacements have different quantities.
Therefore, we can try to calculate potential energies corresponding to
all possible sign factors, and those minimizing the potential energy will
be the correct solutions of sign factors. For discrete elastic bodies, the
potential energy is calculated by the following formula [22]:

∏ = −u Ku u Fη η η η η η η η( , ) 1
2

( , ) ( , ) ( , )
p

r
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C

r
B
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C

r
B

r
C

r
B

r
CT T

(5)

where ∏ η η( , )p r
B

r
C is the potential energy, which is a function with re-

spect to ηr
B and ηr

C . K is the stiffness matrix of the entire structure that is
unknown. Substituting Eq. (4) into Eq. (5) and considering the fact that
the flexibility matrix is the inverse of the stiffness matrix, Eq. (6) is
achieved:

∏ = − F f Fη η η η( , ) 1
2
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Eq. (7) is derived by substituting Eq. (3) into Eq. (6):

∏ ∑ ⎜ ⎟= − ⎡

⎣
⎢

⎛
⎝ −

+
−

⎞
⎠

⎤

⎦
⎥

=

∗ ∗ ∗

∗F
ϕ ϕ ϕ ϕ

Fη η
Q

λ
Q

λ
( , ) 1

2
( ) ( )r r r r

p
r
B

r
C

r

m
r

r

r

r

T

1

T T

(7)

Considering civil engineering structures are mostly light damping
structures and the identified mode shapes are generally real values, i.e.

=∗ϕ ϕr r , Eq. (7) is simplified as follows:
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The load vector F applied on the entire structure can be rewritten as:
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where FA, FB and FC are the load vectors applying on Sub A, Sub B and
Sub C respectively. Substituting Eqs. (2) and (9) into Eq. (8), it is de-
rived that:
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It is seen that only the sign factors ηr
B and ηr

C equating 1 or −1 are
unknown. Trying all possible values of ηr

B and ηr
C for the potential

energy calculation through Eq. (10), those minimizing the potential
energy will be the solutions of sign factors. This process is illustrated in
step 4 of Fig. 5. After ηr

B and ηr
C are solved, the mode shapes of the

entire structure are integrated through Eq. (2), and the entire flexibility
matrix, illustrated in step 5 of Fig. 5, is identified by Eq. (3).

According to the presentation above, the overall framework and
steps to process signals of the developed methodology can be illustrated
as follows:

4. Application to a three span simply-supported steel stringer
bridge

4.1. Impact test of the bridge

The studied bridge (Fig. 6(a)) comprised of three spans with overall
span 48.0 m [23]. Each span harbors a RC deck supported by seven
simply-supported I-shape beams spaced at approximately 2.18m,
which are made of rolled steel. Only the south side of the first span was
selected as the test area that was closed to traffic during testing
(Fig. 6(b)). A total of 24 PCB 393A-03 accelerometers were placed on
the bridge deck directly above the bridge girders to measure vertical
vibration in the closed traffic lanes and along the opposite sidewalk.

(a)

(b)
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Output nodeInput/output node
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Girder 3 
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Fig. 6. (a) Photograph of the bridge; (b) Layout of measuring nodes in the tested span.
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The sensors on the opposite sidewalk were used to assist in identifying
torsional modes. A rebound controlled drop hammer which was capable
of applying 110 kN impact force was used to impact the test area [23].
Six locations were used as input points including node 10, 11, 14, 16,
17 and 20. The sampling frequency was configured as 3200 Hz in both
acceleration and impacting force. Two schemes for dividing the whole
tested area as shown in Fig. 7 for mobile impact testing are studied.

4.2. Basic modal parameter identification

Mobile impact test in Scheme 1 (Fig. 7(a)) is first studied to de-
monstrate the proposed method. The dimensions of FRFs estimated
from two substructures are denoted by �∈ × ×H ω( )AA 9 3 32768 and

�∈ × ×H ω( )BB 12 3 32768 respectively. The singular curves of two sub-
structures are shown in Fig. 8(b) and (c), and the identified frequencies
and damping ratios of the two substructures for the first six modes using
CMIF method [15] are listed in Table 1. The results identified from
conventional impact test of the whole structure are also provided for
comparison in Fig. 8(a) and Table 1. It is seen that those results agree
well to each other.

Other basic modal parameters of two substructures are also identi-
fied, which can be used to generate the modal parameters of the entire
structure. They are denoted by ϕ LQ{ , , }r

A
r
A

r
A , ϕ LQ{ , , }r

B
r
B

r
B for two sub-

structures and = …ϕ LQ r{ , , }( 1,2, ,6)r rr for the entire structure, in which
�∈ ×ϕr

A 9 6, �∈ ×Lr
A 3 6, �∈ ×ϕr

B 12 6, �∈ ×Lr
B 3 6, �∈ ×ϕr

21 6 and
�∈ ×Lr

6 6.

4.3. Magnitude scaling of substructures’ mode shapes

Since the identified mode shapes of Sub A and Sub B are not at the

same scaling level, i.e. ≠Q Qr
A

r
B, magnitude adjustments are needed

when integrating them as the global mode shapes. Because the number
of output nodes in Sub B is larger than that in Sub A, Sub B is chosen as
the master segment. A total six magnitude adjustment factors of Sub A
are calculated by Eq. (1) using identified Qr

A and Qr
B. The results are

listed in Table 2.
It should be noted that the signs of those magnitude adjustment

factors are still unknown. Taking the second mode as an example and
assuming that its sign factor equals to 1, Fig. 9 illustrates the process of
mode shape scaling. The global mode shape, identified with the tradi-
tional impact test of the entire structure and marked with the black
solid line in the figure, is also provided for comparison. It is seen that
the scaled mode shape of Sub A matches well with the global mode
shape at the corresponding nodes when assuming =η 1A

2 . The next
work describes how to determine the sign factors via the proposed
method.

4.4. Sign factor determination by PMPE

For the first six modes, there are six sign factors, = …η r( 1, ,6)r
A , that

need to be determined, which equals 1 or −1. PMPE-based approach
described in Section 3.2 is performed to determine sign factors. If one
tries all possible combinations of sign factors, for instance,

= = − = = − = = −η η η η η η1, 1, 1, 1, 1, 1A A A A A A
1 2 3 4 5 6 is a possible combi-
nation, there are =2 646 cases considering any combinations of either 1
or −1 among six sign factors. Each node is applied a 5 kN load to
calculate displacement and potential energy through Eqs. (4) and (10)
for all 64 possible cases respectively, but among which, theoretically,
only the case having the minimum potential energy is the correct one
according to PMPE. Thus the authors firstly enumerate the 64 quantities

1 2 3 5 6 7 

8 10 9 11 12 

15 16 17 18 20 21 
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4 

Sub A Sub B 
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8 10 9 11 12 
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Sub A Sub B Sub C 

(b)(a)

Fig. 7. Substructure division: (a) Scheme 1; (b)
Scheme 2.

(c) (b) 

(a) 
Fig. 8. Singular value of: (a) Entire structure; (b) Sub
A; (c) Sub B.
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of all possible potential energies in ascending order, and then the se-
quence can be depicted with the gray curve shown in Fig. 10(a), in
which the scenario of the minimum potential energy (rank 1,−39.93 J)
is highlighted with a blue pentagram.

In order to further study the influence of mode order on potential
energy, the potential energy for each case is calculated by sequentially
setting up mode number = …m 1,2, ,6 in Eq. (10). Fig. 10(b) depicts the
relation between the potential energy of each case and order m. It can
be seen that as order increases to six, potential energy for each case
gradually converges to a stable level, whereas only PE of rank 1 has the
minimal potential energy at the sixth order. This is because modal
flexibility generally rapidly converges to the structural flexibility with
the increasing of mode order [20,21].

Deflections predicted through Eq. (4) in typical cases (ranked 1, 16,
32, 48, 64 corresponding to PE) when each node is applied a 5 kN load
are plotted in Fig. 11 for comparison, and the deflection predicted by

the traditional impact test method marked with “Entire” is also plotted
to be the reference. It is seen that the minimum PE-based deflection
agrees well with the referenced deflection, while these deflections
corresponding to non-minimum quantities of PE do not more or less
match with the referenced deflection, which demonstrates the effec-
tiveness of PMPE-based approach for displacement prediction.

In the authors’ computation, all sign factors extracted from PE of
rank 1 for scheme 1 are equal to 1. Whether those sign factors are
correct or not should be checked by comparing the integrated mode
shapes with the referenced global mode shapes identified from tradi-
tional impact test method. For the sake of brevity, the integrated mode
shapes and the global mode shapes are depicted in Fig. 12 with three
dimensional maps. It can be seen that their well proximity certifies the
correctness of sign factors extracted from PE of rank 1 and the high
accuracy of integrated mode shapes. In addition, the values of modal
assurance criterion (MAC) closing to 1 listed in Table 2 further quan-
titatively demonstrate that the mobile impact test with reference-free
measurement can achieve the equivalent results as the conventional
impact test method which requires to measure all inputs and outputs
nodes.

Table 1
Identified frequency and damping ratio (Scheme 1).

Mode No. Entire structure Sub A Sub B

Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%) Freq. (Hz) Damp. (%)

1 7.16 6.53 7.25 7.91 7.13 5.71
2 8.26 5.24 8.25 4.58 8.22 6.20
3 10.14 1.38 10.12 1.38 10.14 1.32
4 14.71 1.76 14.68 1.65 14.70 1.86
5 20.76 0.56 20.57 0.31 20.80 0.66
6 22.85 0.97 22.78 1.08 22.82 0.93

Table 2
Magnitude adjustment factor and MAC value (Scheme 1).

Mode No. Q Q/r
A

r
B MAC

1 0.67 0.9996
2 0.64 0.9992
3 0.65 0.9994
4 0.63 0.9999
5 0.84 0.9856
6 0.72 0.9962

Girder 1 Girder 2 Girder 3 

Fig. 9. Typical mode shapes scaling (Scheme 1).

(a) (b) 

Fig. 10. PE curves corresponding to: (a) Sequence; (b)
Mode number (Scheme 1).

Girder 1 Girder 2 Girder 3 

Fig. 11. Deflections comparison in typical cases (Scheme 1).
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4.5. Full flexibility matrix identification

The full flexibility matrix of the bridge, denoted by �∈ ×f 21 21, can
be calculated through Eq. (3) using the six integrated mode shapes, the
six system poles and modal participation factors of Sub B. Fig. 13
clearly shows its 3-D surface map and as can be seen from it, the
maximum flexibility coefficient is = × −f 2.1 10 m/N55

8 , which ex-
tremely closes to the coefficient obtained from the traditional impact
test method.

To check with whether the modal order, six modes in Scheme 1, will
influence displacement prediction or not, meanwhile to study effects of
mode number truncation, Fig. 14 illustrates the predicted deflections
when each node is applied a 5 kN load, in which the curve denoted by
“4 modes” in Fig. 14 refers to the modal parameters of the first fours
modes contributing to the flexibility matrix in Eq. (3). It can be seen
that the first four modes already insure the accuracy of displacement
prediction for the real bridge and thus six modes of modal parameters
are sufficient for flexibility identification.

4.6. Results of Scheme 2

Scheme 2 that has complex substructures division is adopted to
further validate the feasibility of the reference-free flexibility integra-
tion method. In Scheme 2, Sub B is chosen as the master substructure
and mode shapes of Sub A and Sub C should be adjusted to be consistent
with that of Sub B. The amount for sign factors, = …η η r, ( 1, ,6)r

A
r
C , falls

into =−2 40966(3 1) cases considering any combinations of either 1 or
−1 among six modes of two sign factors. Fig. 15(a) illustrates the sorted
PE for all cases in ascending order when each node is applied a
4.445 kN load, in which the calculated minimum PE (rank 1, −32.36 J)
is highlighted with a blue pentagram.

Similarly to the situation presented in Fig. 10(b), the effect of modal
number truncation on potential energy in each case is depicted in
Fig. 15(b). It can be seen that as order increases to six, potential energy
for each case gradually converges to a stable level, whereas only PE of
rank 1 has the minimal PE at the sixth mode.

For the sake of brevity, the sign factors extracted from PE of rank 1
for scheme 2 have not been provided here, and the magnitude adjust-
ment factors calculated from Eq. (1) and MAC values calculated from
the integrated mode shapes and the referenced mode shapes are listed
in Table 3. It is evident that the high MAC values closing to 1 validate
the correctness of sign factors extracted from PE of rank 1 and the high
accuracy of the integrated mode shapes in Scheme 2.

The integrated full flexibility matrix can be briefly used to simulate
static test on the bridge and hence the deflections induced by truck
loads can be predicted. Assuming a truck with total weight of 300 kN
parks on the bridge and its four wheels just press on node 10, 12, 17, 19
respectively, each wheel will apply 75 kN to the interacted nodes.
Fig. 16 illustrates the deflections predicted by the integrated full flex-
ibility matrix in Scheme 2. The error due to mode number truncation is
studied. It can be seen that using the first four modes are able to suf-
ficiently capture the flexibility characteristics of the real bridge despite
only the first six modes of modal parameters have been obtained.

In practice, adopting different master substructure will influence the
results of full flexibility matrix integrated. Generally, a reasonable
substructure with effective partition and stable modal parameters
identified should be adopted as the master segment. Furthermore, for

Mode 1 Mode 2 Mode 3 

Mode 4 Mode 5 Mode 6 

Fig. 12. 3-D map of the six integrated mode shapes
(Scheme 1).

Fig. 13. 3-D map of the identified full flexibility matrix (Scheme 1).

Girder 1 Girder 2 Girder 3 

Fig. 14. Deflections prediction when each node is applied a 5 kN load (Scheme 1).
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complex substructures divisions, some modes of a certain substructure
may be lost if the node being impacted just place on one of nodes of
vibration. But this question can be overcome by performing multiple
reference impact testing (MRIT), i.e., impacting different nodes (at least
two nodes) in each substructure.

5. Conclusions

This paper presents a rapid mobile impact test method for structural
flexibility identification. The method makes up for the shortcomings of
traditional one-off shock and vibration testing method, and truly rea-
lizes the overall identification of structural parameters. The key tech-
nology is how to integrate the observed vibration data of all sub-
structures to get the entire structural identification results consistent
with the test results of traditional impact test method. The conclusions
are as follows:

(1) A pure reference-free mobile impact test approach has been pro-
posed. It tests each subdivided segment in turn and the recorded
data are used to identify each segment’s modal parameters. The
adjusting factors and PMPE are utilized to integrate isolated mode
shapes of each mode into the global mode shapes of the entire
structure and get the full flexibility matrix.

(2) Comparing to the conventional impact test method which measures
all inputs and outputs signals, the proposed method can obtain the
same results but needs less instrumentation and test time as well as
cost, therefore it has great potentialities in rapid testing and mon-
itoring of short/middle span bridges.

(3) Application of the proposed approach to an actual bridge success-
fully verifies its feasibility and efficiency for identifying the full
flexibility matrix. Furthermore, the experimental study approves
that the number and formation of substructures can be divided
flexibly.

(4) Higher modes have little influence on the potential energy and the
minimum potential energy cannot guarantee the correctness of the
automatic determination of the sign factors in higher modes. The
way to identify higher modes information will be studied in the
future, even though the identified modes have met the requirement
of accuracy as shown in this article.
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