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Abstract: Structural identification (St-Id) is an effective structural evaluation approach for health monitoring and performance-based engi-
neering. However, various uncertainties may significantly influence the reliability of St-Id. This paper presents ambient vibration measure-
ments to develop a baseline model for a newly constructed arch bridge over Hongshui River in Guangxi, China. In this study, modal parameter
identification was performed using the random decrement (RD) technique together with the complex mode indicator function (CMIF) algo-
rithm, and the results were compared with those from stochastic subspace identification (SSI). First, a three-dimensional (3D) finite-element
(FE) model was constructed to obtain the analytical frequencies and mode shapes. Then, the FE model of the arch bridge was tuned to mini-
mize the difference between the analytical and experimental modal properties. Three artificial intelligence algorithms were used to calibrate
uncertain parameters: the simple genetic algorithm (SGA), the simulated annealing algorithm (SAA), and the genetic annealing hybrid algo-
rithm (GAHA). The simulation results showed that GAHA exhibited the best performance in mathematic function tests among the three meth-
ods and that the large-scale arch bridge could be efficiently calibrated using a hybrid strategy that combines SGA and SAA. To verify the
admissibility of the calibration procedure, a sensitivity analysis was performed for the Young’s modulus of the steel members, and the relative
error for the static deformation of the bridge deck was determined. Finally, to verify the accuracy of the results, a multimodel updating method
based on Bayesian statistical detection was analyzed for further validation. Through a detailed St-Id study using precise modeling, operational
modal analysis (OMA), and the artificial intelligence algorithms, the authors confirmed the accuracy of the updated FEmodel for further struc-
tural performance prediction.DOI: 10.1061/(ASCE)BE.1943-5592.0001086.© 2017 American Society of Civil Engineers.

Author keywords: Operational modal analysis; Epistemic uncertainty; Finite-element model; Model calibration; Concrete-filled steel
tubular arch bridge.

Introduction

The characterization of long-span bridges has received increasing
attention in recent years not only because of the degradation of
many structures and the limitations of traditional assessment
approaches but also because of the increasing complexity of new
bridges (Magalhães et al. 2008). Structural identification (St-Id), as
proposed by Liu and Yao (Hart and Yao 1977; Liu and Yao 1978),
is a systematic approach for characterizing the structural behavior
of an unknown system based on the input and output test data. St-Id
has been used for numerous applications, including condition
assessment and maintenance management. The St-Id framework
involves six basic steps: observation and conceptualization, a priori
modeling, controlled experimentation, processing and interpretation

of data, model calibration and parameter identification, and use of the
model for simulations (Catbas et al. 2013).

In the third step of St-Id, ambient vibration tests take advantage
of such natural excitation sources as traffic, wind, and microtremors
and combinations of these sources. The application of ambient
vibration tests is cost-effective because the measurement does not
require the interruption of public traffic on bridge decks. The char-
acteristic of ambient vibration is generally assumed as spatially dis-
tributed and broad-banded. Thus, a few operational modal analysis
(OMA) methods can provide accurate estimates of natural frequen-
cies, mode shapes, and damping ratios despite the relatively low
amplitude of vibration signals. Assessments based on ambient
vibration can efficiently provide accurate information concerning
the actual bridge performance under working conditions. To date,
several hundred applications of OMA on long-span bridges have
been reported, such as those for the Golden Gate suspension bridge
(Abdel-Ghaffar and Scanlan 1985), Tsing Ma Bridge (Kwong et al.
1995), Tennessee River steel arch bridge (Ren et al. 2004), Jiangyin
Bridge (Ko and Ni 2005), Beichuan River bridge (Jaishi and Ren
2005; Jaishi et al. 2007), Infante D. Henrique Bridge (Magalhães et
al. 2008), Svinesund Bridge (Schlune et al. 2009), Alfred Zampa
Memorial Bridge (He et al. 2009), Tamar Bridge (Cross et al.
2013), and Aizhai suspension bridge (Yu and Ou 2016). It should
be emphasized that Dr. Aktan’s research team at Drexel University
has been involved in the testing of a wide range of operating bridges
using OMA as an experimental tool (Catbas et al. 2007;
Grimmelsman 2006; Pan et al. 2009; Zhang et al. 2013a; Dubbs and
Moon 2016).

The accurate modeling of constructed systems poses a challenge
because of the significant epistemic uncertainties associated with
the boundary conditions, intrinsic force distributions, nonlinear and
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nonstationary behaviors, and material and cross-sectional proper-
ties. Oberkampf (2005) defined two types of uncertainties: episte-
mic uncertainty and aleatory uncertainty. Epistemic uncertainty is
caused by a lack of knowledge of the quantities or processes of the
system or the environment and is also referred to as subjective
uncertainty, reducible uncertainty, and model uncertainty (Ciloglu
et al. 2012). Aleatory uncertainty is an inherent variation associated
with the physical system or the environment and is also referred to
as variability, irreducible uncertainty, stochastic uncertainty, and
random uncertainty. Moon and Aktan (2006) conducted a detailed
review of the impact that uncertainty has on the St-Id of constructed
systems. Pan et al. (2009) discussed various sources of epistemic
uncertainty and described mitigation approaches based on the St-Id
of a long-span steel arch bridge. Ciloglu et al. (2012) designed a
physical laboratory model to simulate four key sources of epistemic
uncertainty representing the primary test variables. The results dem-
onstrated that proven and accepted data-preprocessing techniques
and modal parameter-identification algorithms can significantly
bias OMA results when used in certain combinations under differ-
ent structural and excitation conditions.

In the fifth step of St-Id, updating of the finite-element (FE) model
entails tuning the model so that it can better reflect the measured data
from the physical structure being modeled (Friswell andMottershead
1995). Model-updating methods can basically be classified as direct
methods and iterative methods based on whether the methods modify
the elements of the system matrices (mass, stiffness and possibly
damping matrices) directly or tune model parameters (e.g., structural
geometric and material parameters) iteratively. In general, the opti-
mum solution can be obtained by using least-squares minimization
optimizationmethods, andmethodologies based on heuristic stochas-
tic algorithms to solve the optimization problem in St-Id have been
employed in recent years; among them, simple genetic algorithms
(SGAs), particle swarm optimization (PSO), ant colony optimization
(ACO), artificial neural networks (ANNs), evolutionary strategy
(ES), and differential evolution (DE) algorithms have gained increas-
ing attention (Sun et al. 2013). Sun and Betti (2015) proposed a
hybrid approach that is a combination of a modified artificial bee
colony (MABC) algorithm and the Broyden–Fletcher–Goldfarb–
Shannon (BFGS) method. Koh et al. (2003) proposed a hybrid com-
putational strategy combining a genetic algorithm (GA) with a com-
patible local search operator for large-structure parameter identifica-
tion. Wang (2009) developed a hybrid GA integrated with the Gauss
–Newton method to identify the structural system. The classic GA
and the simulated annealing algorithm (SAA) are acknowledged to
offer certain advantages and have been applied to many practical
problems, such as bridge maintenance and scour-depth prediction at
bridge piers (Azamathulla et al. 2010; Furuta et al. 2014). The appli-
cation of hybrid GA has obvious advantages over the classic GA
method. When updating the high-fidelity FE model of the complex
bridge structure, the high-resolution FE model is constructed on the
platform of the FE packages, whereas the advanced optimization
techniques, such as the GAmethod, can be easily implemented in nu-
merical software such asMATLAB (Wan and Ren 2015). Sanayei et
al. (2015) and Sipple and Sanayei (2014) developed a frequency-
response function-based parameter-estimation method for model cal-
ibration of a full-scale bridge; they then developed a robust multiple-
response structural parameter-estimation method for the automated
FE model updating. They used PARIS as the automated FE model
calibration code for full-scale structures, and the application pro-
gramming interface (API) technique allowed real-time exchange of
information between MATLAB and SAP2000 during the iterative
stages and the updating of model parameters in the optimization
process.

In the sixth step of St-Id, the purpose of FE model updating is to
fully understand the structural performance. The applications can
lead to calibration of new design approaches, an understanding of
deterioration mechanics, and an indication of the effectiveness of
maintenance techniques, all of which can aid in decision making,
especially in terms of the choice related to structural maintenance,
preservation, or replacement, which involves a complicated inter-
section of technical, social, political, environmental, and economic
considerations (Moon et al. 2010). The updated model can also be
used to deduce different hypothetical scenarios in which the bridge
engineer is interested, to analyze the mechanical characteristics, to
establish critical regions for reliability/vulnerability analysis, and to
conduct nonlinear collapse analysis; it is also useful in designing
instrumentation for monitoring and for design renewal (Aktan et al.
1997).

Objective and Scope

This paper discusses the challenges that were overcome in a recent
application of St-Id for a long-span arch bridge. Emphasis is placed
on correlating the experimental data and the calculated data and
using heuristic expertise to update the physical parameters in a com-
plex FE model. A complete St-Id procedure, including field testing,
signal processing, FEmodel construction, model analysis, and auto-
matic parameter identification with the aid of an API, is presented.
Field testing, including static testing under truck loads and ambient
vibration testing (AVT) under natural excitations, was conducted,
and the modal characteristics were extracted using two different
identification techniques. A three-dimensional (3D) FE model of
the bridge based on the existing drawings, which were verified
through an on-site inspection, was analyzed to identify the bridge’s
analytical characteristics. The SGA and the genetic annealing
hybrid algorithm (GAHA) were utilized to calibrate the uncertain
parameters. Two methods were implemented in MATLAB to auto-
matically achieve multiple-parameter identification. A parameter
assessment was performed, and the admissibility of the calibrated
model was verified to validate the applicability of the entire identifi-
cation procedure. Finally, a multimodel identification strategy
based on the Bayesian interface strategy was used to validate the
identified results.

Bridge Description (Step 1)

The Laihua Bridge is a concrete-filled steel tubular arch bridge built
in 2012. It is located in Laibin City, China, and crosses the
Hongshui River; the main span of the bridge is 220m long with a
width of 32m. The general layout drawings of the entire bridge are
presented in Fig. 1. Each cross section of the two main arch ribs
consists of four concrete-filled tubes with dimensions of f 750 �
20 or f 750 � 16mm. The depth of the main arch ribs varies from
5.50m at the footing to 3.50m at the top with a constant width of
2.0m. The two main arch ribs of the superstructure are connected
by 10K-type hollow steel tubes. There are 36main suspenders, con-
sisting of polyether sulfone steel wire ropes that are vertically
attached to the main arch ribs at 7-m intervals. Below the level of
the floor system, 16 concrete-filled tubes (f 800, filled with C50)
are supported between the arch ribs and the bridge deck. The floor
system consists of a 320-mm-thick concrete slab supported by 11
longitudinal stringers (typicalW16� 77, spaced at 2.7m). The typi-
cal sections of the floor beams have 1,780� 16mm webs and 50-
mm cover plates. The length of the floor beams between the main
wire rope suspenders is 27m. The superstructure is supported by
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expansion bearings, and the arches are supported on massive con-
crete blocks.

FEModeling (Step 2)

Bridge Modeling

Building accurate FE models is one of the main challenges in struc-
tural analysis. Rational FE modeling must strike a balance between
accuracy and calculation efficiency. To mitigate modeling uncer-
tainty, the geometry and member details of FE models should be
constructed in strict accordance with the design blueprints and field
inspection. An element-level 3D FE model was constructed in
Strand7 analysis software, as shown in Fig. 2. The FE model had a
total of 19,004 nodes, 22,972 beam elements, and 2,256 shell ele-
ments. The main structural members were cables, girders, floor
beams, a concrete slab, and arches. The RC deck was discretized
using shell elements with six degrees of freedom (DOF) at each
node. Space frame elements were used to represent the deck string-
ers, floor beams, verticals, handrails, crash barriers, cushion caps,
and arch ribs of the substructures, and the bracings were modeled

using link elements to mimic the actual end connections. Both the
cross girders and arch ribs of the bridge consist of variable sections,
which were accurately simulated in the model. The 61 PES-7-061
Type (GB/T 18365-2001) strand cables were modeled in Strand7
using 3D tension-only beam elements. The main arch is anchored in
massive concrete blocks set on rock; fixed bearings are used for the
arches, whereas expansion bearings are used for the bridge deck.
Generally, there are two kinds of modeling strategies to model the
concrete-filled steel tubes, unified modeling theory (Zhong 2003)
and the general modeling theory, as shown in Fig. 3. After compari-
son of the predicted results of the modal information and static
deflection, the general modeling theory, which simulates the cross
section as separate sections for the steel tube and the concrete core,
was chosen for the following model-updating analysis.

Sensitivity Analysis

The parameters that the modeling results were most sensitive to
were identified to allow the FE model to be iteratively updated; this
procedure is typically referred to as sensitivity analysis–based
model calibration. In general, the parameters to which a structural
model are most sensitive are the material properties and boundary

(a)

(b)

(c)

Fig. 1. Structural layout plan of Laihua Bridge: (a) elevation view; (b) plan view; (c) detailed cross-sectional drawings (Note: w 351� 10 means a
steel tube with a diameter of 351mm and a thickness of 10mm)
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conditions (Aktan et al. 1998). The critical parameters to be ana-
lyzed in this study were selected as follows:
1. The Young’s moduli of the concrete arch ribs, bridge deck, pe-

destrian deck, verticals, and crash barriers,
2. The Young’s moduli of the steel arch ribs and stay cables, and
3. The vertical stiffness boundary conditions at the ends of the

bridge deck.
Generally, a sensitivity analysis is based on an FE model repre-

sentation of a physical system and attempts to assess the sensitivity
of the objective function to variations in uncertain parameters. This
study used two types of objective functions, one concerning deflec-
tions under static loading conditions and one concerning modal fre-
quencies and mode shapes (Jaishi et al. 2007), as shown in Eqs. (1)
and (2), respectively.

F xð Þ ¼
X10
i¼1

jdai � deij (1)

where dai = deflections predicted by the FE model; dei = experimen-
tally measured values; x = the uncertain parameter chosen for the
sensitivity analysis; and i = the ith measurement point in the full
static test.

F xð Þ ¼
Xm
i¼1

fai � fei
fei

� �2

þ
Xm
i¼1

1� ffiffiffiffiffiffiffiffiffiffiffiffiffi
MACi

p� �2
MACi

(2)

where fai = frequencies predicted by the FE model; fei = frequencies
calculated by the SSI method; x = the uncertain parameter chosen
for the analysis; i = the ith considered mode; andm is the number of
mode shapes considered. Modal assurance criteria (MACs), as
shown in Eq. (3), were used to evaluate the correlations between
mode shapes.

MACi ¼ UT
aiUei

� �2
UT

aiUai

� �
UT

eiUei

� � (3)

where Uai = mode shape predicted by the FE model; Uei = mode
shape identified by the SSI method; and i = the ith consideredmode.

A sensitivity analysis with respect to the initial estimates of the pa-
rameters was performed for nine influential parameters by curve fit-
ting, as shown in Fig. 4. The sensitivity analyses shown in Figs. 4(a, c,
and e) relate to static deflection, whereas the analyses shown in Figs.
4(b, d, and f) relate to themodal parameters. Themost sensitive param-
eters identified using the static loading data and the modal data were
almost the same, and the two different objective functions showed sim-
ilar trends with respect to variations in the boundary conditions.

Dynamic and Static Tests (Step 3)

Ambient Vibration Testing

Prior to the official opening of the bridge in June 2013, full-scale
AVT was conducted on the Laihua Bridge, and dense instrumenta-
tion layouts were established on the bridge deck and the arch ribs in
the vertical and lateral directions. An LMS International (Leuven,
Belgium) Cada-X data-acquisition system with eight channels was
used to simultaneously record the ambient vibration signals.
KD12000L ultralow-frequency accelerometers (20V/g) were in-
stalled on the bridge deck and arch ribs; of these accelerometers, six
were moved among various measurement points, and the other two
were used to establish fixed reference points (Fig. 5). The reference
points were selected according to the preliminary information
obtained from a modal analysis of the FE model to avoid placing
the measurement instruments on modal node points. A sampling
frequency of 512Hz was chosen, and each data set was collected
for a duration of 15minutes. The typical signals in the vertical and
transverse directions are shown in Fig. 6.

Full Static Loading Tests

Diagnostic load testing, such as truck load testing, is an independent
experimental tool in St-Id and can be regarded as complementary to
global modal testing. When properly conducted, static loading tests
provide excellent verification of the AVT results and serve as a valua-
ble tool for exploring the localized characteristics of a bridge. Static
loading tests of the Laihua Bridge were conducted using a level gauge
on the bridge deck to measure its deformation and a general total sta-
tion to measure the deflections of the arch ribs. Full static loading tests

Fig. 3. Cross-sectional modeling of a concrete-filled steel tube:
(a) unified theory; (b) general modeling method

Fig. 2. (a) Laihua Bridge (image by Yun Zhou); (b) Laihua Bridge FE
model inMidas; (c) Laihua Bridge FEmodel in Strand7
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were performed for 20 different cases in different configurations.
Trucks with known wheel loads were positioned at 1/4 of the bridge
span, and the corresponding displacements weremeasured.

Dynamic Signal Processing (Step 4)

Dynamic Signal Analysis

In OMA, the structure is excited by unknown input forces (such as
wind, traffic, earthquakes, and waves), and only output data are

acquired.Adataqualitycheckshouldbeconductedfirst to ensurea reli-
ableOMA.Thequalityof thedatawasevaluatedbyvisually inspecting
both the time and frequency domains using the fast Fourier transform
(FFT) technique.Spurious responses in the timehistoryofeachchannel
were removed topreserve themaximumacceptable responsedata.

Inmany previous applications of dynamic signal analysis, a number
of missing modes or sporadic modes have appeared or disappeared
depending on the various preprocessing and postprocessing techniques.
The reasons for such modes and the reliability of intermittent modes
are fundamental questions that continue to challenge OMA. The uncer-
tainty introduced by the presence or absence of such modes is difficult
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Fig. 4. Variations in the value of the objective function: (a) versus Young’s modulus using the static test data; (b) versus Young’s modulus using the
modal test data; (c) versus boundary conditions using the static test data; (d) versus boundary conditions using the modal test data; (e) versus thickness
of the pedestrian deck using the static test data; (f) versus thickness of the pedestrian deck using the modal test data
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to address using probability theory and represents a key source of epis-
temic uncertainty. To eliminate the influence of epistemic uncertainty,
the results of the random decrement (RD) technique in combination
with the complex mode indicator function (CMIF) were compared
with the results of the SSI technique in the following analysis.

Operational Modal Analysis

The basis of the CMIF method is the singular value decomposition
(SVD) of a multiple-reference function matrix, whereas the SSI

method is based on the discrete state-space formulation that repre-
sents the dynamic system behavior. Previous research on these two
identification approaches includes the studies performed by Shih et
al. (1988), Phillips et al. (1998), and Peeters and DeRoeck (1998).
In this study, the complex mode indicator plot obtained using the
CMIF approach and the stabilization diagram obtained using the
SSI method clearly indicate consistency in the modal frequency
estimations (Fig. 7). For most long-span bridges, the frequency
range of interest lies between 0 and 10 Hz, which contains most
of the relevant modal characteristics. The identified natural
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Fig. 5. (a) Instrumentation layout; (b) static truck loading tests at 1/4 of the span; (c) case with 10 trucks at 1/4 of the span (image by Yun Zhou);
(d) detailed truck load
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frequencies and mode shapes of the first 10 vibration modes are
summarized in Table 1 and Fig. 8. The identified damping ratios
are very low, which is consistent with the results of previous
St-Id studies of long-span arch bridges (Ren et al. 2004).

Mode Coupling

In this study, ambient vibration signals were measured in the verti-
cal and transverse directions. Because of the number of sensors and
the different signal-to-noise ratios typically associated with differ-
ent response directions, it is common to postprocess data sets to
obtain two-dimensional (2D) mode shapes in each direction sepa-
rately. However, strong spatial coupling was evident in the vibra-
tions of the bridge deck and arch ribs, indicating that the 2D post-
processing approach might be not sufficient for revealing the actual
behavior of the structure in multiple directions. Fig. 9 shows the
spatial mode coupling at 2.503Hz, and Table 2 specifies several of
the coupling modes of the bridge deck and arch ribs.

It has to be indicated that the modes of the bridge deck may be a
better choice over the modes of the arch rib in the following model
calibration procedure for two reasons: (1) the number of modes of
the arch ribs that could be excited was much less than that of the
bridge deck because the stiffness of the arch ribs was much larger
than that of the bridge deck, therefore making it more difficult to
excite the vibrationmodes of the arch ribs; and (2) the identifiability
of the arch rib vibration modes was much lower than that of the
bridge deck, as can be judged from the fact that the curves of some
measured vibration modes of the arch ribs were not smooth and
symmetric as would normally be expected.

Optimization Methods andModel Calibration (Step 5)

Artificial Intelligence Algorithms

The SGA is a bionic random algorithm that mimics the biological
process of natural genetics and natural selection (Goldberg 1989). It
is performed using a number of individuals, and adaptive solutions
are propagated from one generation to the next until the termination
criterion is satisfied. Computationally simple and powerful, SGAs
are practical methods for searching for global optima without previ-
ous information (Krishnamoorthy et al. 2002; Castillo et al. 2007;
Cheng and Yu 2013). The SAA is an iterative method in which an
initial solution is gradually improved by making local changes with
a probability that depends on temperature. This method was first
introduced by Kirkpatrick et al. (1983), and it has been widely
applied to large-scale combinatorial problems (Mantawy et al.

1998; Aydin and Fogarty 2002). Recently, recognition of the com-
plementary strengths of SGA and SAA has led to the development
of a hybrid method to achieve a more efficient search for complex
combinatorial problems (Blum and Roli 2008). In the proposed
GAHA, the optimization operators, the fitness evaluation function,
and SAA integration strategies are designed to improve the conver-
gence, as illustrated in Fig. 10. In the early stage, the GAHA per-
forms a parallel search with high efficiency to avoid premature con-
vergence, and in the later stages, a fine-tuned search can be
achieved using the SAA. GAHA has been applied to many compli-
cated engineering problems, such as global function optimization
and the discrete time–cost trade-off problem (Chen et al. 2005;
Sonmez and Bettemir 2012).

Global Calibration

In this study, model calibration through nonlinear optimization was
coded in MATLAB and applied with the help of an API. The API
technique enables users to create and calibrate model parameters in
Strand7 through coding inMATLAB; another advantage of the API
is its ability to link toMATLAB toolboxes.

In SAA, it requires a relatively small number of parameters,
including the cooling ratio (a), the maximum number of genera-
tions (MAXGEN), and the initial and final temperatures T0 and Tf,
respectively. As each generation develops, the value of the objec-
tive function for the current state is denoted by Ei, and the value af-
ter the application of a perturbation mechanism is denoted by Ej.
The perturbation will be accepted with a probability p given by

p ¼ exp
Ej � Eið Þ
b� aT

(4)

where b = a constant; p is to be comparedwith a randomly generated
number between 0 and 1; and T = the temperature that slowly
decreases from one generation to the next. If p> rand(1), then the
perturbation is accepted.

To verify the effectiveness of the proposed GAHA algorithm in
solving optimization problems, three classic mathematic bench-
mark functions with 20 unknown variables were tested: Ackley
function, Griewank function, and Rosenbrock function (Sun and
Betti 2015; Zhu and Kwong 2010). In SGA and GAHA, the SGA
parameters were applied based on an initial population consisting of
40 individuals with 10,000 generations and a generation gap of 0.9.
In SSA and GAHA, the SAA parameters were set as T0 = 90, Tf =
–10, a = 0.95, and MAXGEN = 10,000. The stopping criteria for
SGA, SAA, and GAHA were when the objective function reached

Table 1. Comparison of Experimental and Analytical Frequencies

Mode number

Experimental frequencies (Hz) Analytical frequencies (Hz)

SSI RDþCMIF Strand7 Error (%) Midas Error (%)

1 0.694 0.695 0.708 2.09 0.570 17.80
2 1.040 1.064 1.082 4.09 1.049 0.86
3 1.531 1.550 1.394 8.95 1.380 9.86
4 1.730 1.751 1.763 1.90 1.739 0.52
5 2.243 2.314 2.285 1.89 2.020 9.94
6 2.503 2.509 2.501 0.08 2.490 0.52
7 2.808 2.875 2.829 0.73 2.770 1.35
8 3.406 3.438 3.461 1.60 3.338 1.99
9 3.949 3.937 3.815 3.39 3.796 3.87
10 4.536 4.502 4.618 1.80 4.014 11.51

Note: Error (%)¼ fanalysis � fexperiment SSI

� �
=fexperiment SSI

� 100%.
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the maximum number of generations. The convergence lines of the
three benchmark functions are shown in Fig. 11. Although three
algorithms resulted in different convergence rates and solution
accuracies in different functions, it can still be seen that the pro-
posed GAHA algorithm had a better performance than the SGA and
SAA. The SAA converged on an infeasible design because it began
from a random point and then worked its way toward the minimum,
meaning that a local minimum is more likely to be reached.
Considering the convergence rate of the different algorithms, only
the SGA andGAHAwere utilized in the following analysis.

No. Strand7 software  SSI method CMIF method 

1 

MAC1,Strand7-SSI=0.942 MAC1,Strand7-CMIF=0.966 

2 

MAC2,Strand7-SSI=0.928 MAC2,Strand7-CMIF=0.920 

3 

MAC3,Strand7-SSI=0.893 MAC3,Strand7-CMIF=0.931 

4 

MAC4,Strand7-SSI=0.901 MAC4,Strand7-CMIF=0.924 

5 

MAC5,Strand7-SSI=0.864 MAC5,Strand7-CMIF=0.886 

6 

MAC6,Strand7-SSI= 0.873 MAC6,Strand7-CMIF=0.861 

7 

MAC7,Strand7-SSI=0.948 MAC7,Strand7-CMIF=0.953 

8 

MAC8,Strand7-SSI=0.810 MAC8,Strand7-CMIF=0.581 

9 

MAC9,Strand7-SSI=0.864 MAC9,Strand7-CMIF=0.804 

10 

MAC10,Strand7-SSI=0.641 MAC10,Strand7-CMIF=0.619 

Fig. 8. Calculated and experimental mode shapes

(a) (b)

Fig. 9. Spatial mode coupling at 2.503Hz: (a) elevation view of the
vertical modes; (b) plan view of the transverse modes
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For the parameter identification of the bridge, it was assumed
that the field test data were reliable, and an absolute percentage error
for the modal information as illustrated in Eq. (2) was used. As pre-
sented earlier, the sensitivity analysis revealed five parameters with
significant relative importance. Among these parameters, the thick-
ness of the pedestrian deck, which is regarded as a certain parameter
in the real structure, could be selected to validate the applicability of
the optimization methods. The SGA and GAHA were used to
search for the global minimum value of the objective function. The
selected parameters were estimated in each generation, and the opti-
mization procedure was terminated when a predefined number of
generations was reached. In this study, the SGA and GAHA were
applied based on an initial population consisting of 50 individuals
with 50 generations and a generation gap of 0.9. The GAHA param-
eters were defined empirically as follows: T0 = 90, Tf = –10,
MAXGEN= 100, and a = 0.98.

Identified Results

The sensitivity analysis revealed that the modal data and static load
deflections were significantly affected by the vertical stiffness at the
ends of the bridge deck. In the initial FE model, the boundary condi-
tion was represented by separate spring-damping elements con-
strained in the vertical direction. Rigid links were used in the trans-
verse and longitudinal directions to simulate the interfaces of adjacent
bridge deck sections. After calibration, the bearings in the vertical

direction were assumed to be pinned, which agrees well with the field
test results. The second step of calibration was to update the uncertain
parameters in the initial model to align with the modal frequencies
and mode shapes identified via OMA. The evolution processes of
SGA and GAHA are shown in Fig. 12. The ratios of the optimal value
of each parameter after calibration relative to the initial design value
are presented in Fig. 13. Among the updated models obtained in this
way, themodel calibrated using theGAHAmethod showedmuch bet-
ter agreement with the OMA results. The changes in the selected pa-
rameters to be updated are listed in Table 3, and the final analytical
frequencies after calibration are given in Table 4. One important con-
cern in model calibration is to check the physical meanings of the
uncertain parameters against typical observations in practice. The
updated values of the Young’s modulus of the concrete arch ribs and
the bridge deck increased, whereas the other values slightly decreased,
which is consistent with the possibility that the concrete in the steel
tubes may be confined and the fact that the dynamic modulus of con-
crete is larger than its static modulus.

Admissibility Check

A model admissibility check, which consisted of two steps, was con-
ducted as a validation procedure to evaluate whether the calibrated
model was suitable for simulating the real structure. The reliability of
the changes to the initial FE model and the agreement between the

Table 2. Spatial Coupling of the Bridge Deck and Arch Rib Vibrations in Certain Modes

Mode
sequence

Vertical vibration of the bridge
deck (Hz)

Transverse vibration of the bridge
deck (Hz)

Vertical vibration of the arch
ribs (Hz)

Transverse vibration of the arch
ribs (Hz)

Second 1.040 — 1.064 —

Third 1.531 — 1.503 1.506
Fourth 1.730 — 1.751 —

Sixth 2.503 2.503 2.503 2.508
Seventh 2.808 — 2.876 —

Initializing candidates

Computing objective function value

Stochastic universal selection

Multipoint crossing operation

Mutation operation

Reading GAHA parameters 
and setting gen=1

Presenting optimal solution

Termination 
criterion

gen=gen+1

Candidates and iter=1

Mutation operator

Computing objective function value

Comparing current value 
and old value

Accept Accept by metropolis algorithm Reject mutation

Output result

iter=iter+1

Cooling schedule 
termination criterion

Applying 
cooling system

New generation

Fig. 10. Flowchart of GAHA
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numerical and experimental data were checked, but this was not
sufficient for a physically meaningful updated model. In this pa-
per, the Young’s modulus of steel was generally regarded as a
near-deterministic parameter. After global correlation, the error
index was minimized when the Young’s modulus was set to its nomi-
nal value. After calibration, the changes to all uncertain parameters
were found to be less than 10%, which is acceptable considering the
epistemic uncertainties. Moreover, as a deterministic parameter in the
real structure, the thickness of the pedestrian deck remained close to
its nominal value after calibration with two algorithms. Afterward, a
sensitivity analysis considering themodulus of the steel girders, which
was known to be nearly deterministic, was performed. Unlike the ini-
tial FE model, the objective function values of the calibrated models
were minimized when the Young’s modulus of the steel girders was
set to its nominal value, as shown in Fig. 14(a). Moreover, the deflec-
tions of the bridge deck were also checked, and the relative error at ev-
ery measurement point in the static loading tests was determined.
Generally, the maximum relative error between the measured and
simulated deflections was reduced from 7.35 to 3.22% [Fig. 14(b)].

Double Validation by the Multimodel Approach

Because of the presence of two different kinds of uncertainties, there
are challenges associated with errors and parameter compensation in-
herent to inverse tasks. The multimodel approach is developed

Fig. 11. Convergence lines of three benchmark mathematic functions
of 20 dimensions: (a) Ackley function; (b) Griewank function;
(c) Rosenbrock function
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Fig. 12. Evolution processes of SGA and GAHA
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1.1
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1.3
 Genetic algorithm (SGA)
 Genetic annealing hybrid algorithm (GAHA)
 Multiple model analysis (MMA)

U
ni

fie
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lu

e

Uncertain parameters
Ec Es Ed Ep Th

Fig. 13. Results of uncertain-parameter identification using the three
optimization algorithms and multimodel method (Note: Ec, Es, Eb, Ep,
and Dp denote the moduli of the concrete arch ribs, the steel arch ribs,
the bridge deck, and the pedestrian deck and the thickness of the pedes-
trian deck, respectively)

Table 3. Parameters of the FE Model before and after Calibration Using
GAHA

Parameter updated
Initial
value

Updated
value

Change
(%)

Modulus of concrete arch ribs
(MPa)

3.74� 104 4.09� 104 9.36

Modulus of steel arch ribs (MPa) 2.27� 105 2.13� 105 –6.17
Modulus of bridge deck (MPa) 6.86� 104 7.02� 104 2.33
Modulus of pedestrian deck (MPa) 4.64� 104 4.51� 104 –2.80
Thickness of pedestrian deck (m) 0.2 0.19 –5.00
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(Raphael and Smith 1998) after all sources of uncertainties have been
explicitly taken into account. The difference of the deterministic
model-updating approach lies in its search for multiple candidate

models that explain the measurements taken from a structure. By
studying a number of candidate models consisting of variables repre-
senting key uncertainties, all possible structural parameter sets and
various uncertainties are investigated. Thus, structural prediction
using the multimodel method is more realistic for supporting a risk-
based decision-making process. Model fragments partially describe
components and physical phenomena, and a complete model is cre-
ated by combining fragments that are compatible (Smith and Saitta
2008). To model the behavior of structures, the fragments represent
support conditions, material properties, geometric properties, nodes,
elements, and loads. Themultimodel St-Idmethod usesmultiplemod-
els to predict the measured results; the key step is to select the correct
models from the model clusters. A group of FE models that matches
the real structural response can be incorporated to identify correlations
and clusters of the candidate model populations that can be employed
in the current framework for more efficient St-Id. Over the past
15 years, the research team led by Professor Smith has conducted a se-
ries of preliminary studies of multimodel system identification
(Raphael and Smith 2003; Robert-Nicoud et al. 2005).

Bayesian inference is an especially useful tool to address this
problem by combining the prior knowledge of the structure with the
observed vibration data into a statistical framework. The success of
the Bayesian inference for FEmodel updating relies on the effective
application of proper stochastic simulation methods (Ching et al.
2006; Cheung and Beck 2009). Bayesian model-updating techni-
ques make it possible to identify a set of plausible models with
probabilistic distributions and to characterize the modeling uncer-
tainties of a structural system. Recently, Markov chainMonte Carlo
(MCMC) sampling has been used to quantify parameter uncertain-
ties in model updating for the reliable assessment of a footbridge
and a 21-story concrete building (Sun et al. 2017; Behmanesh and
Moaveni 2015).

In this study, Bayesian model updating was utilized via MCMC
sampling and weighing based on Bayes’ statistic theorem, and the
multimodel method was used to validate the accuracy of the results
of the single-model updating method. Based on the Bayesian statis-
tical detection and error analysis, the multimodel updating builds
random model clusters using random sampling. Through the analy-
sis of measured data and the FEmodel analysis results, the posterior
probability can be calculated from the prior probability and likeli-
hood function (Zhang et al. 2013b) based on Eq. (5), as follows:

p Mi uð Þ=D� � ¼ p D=Mi uð Þ� �
p Mi uð Þ½ �Pn

i¼1
p D=Mi uð Þ� �

p Mi uð Þ½ �
(5)

Table 4. Analytically Identified Natural Frequencies after Model Updating

Mode number SSI frequency (Hz)

Frequencies after model calibration

MACSGA (Hz) Error (%) GAHA (Hz) Error (%)

1 0.694 0.707 1.91 0.706 1.78 0.977
2 1.040 1.080 3.89 1.081 3.90 0.946
3 1.531 1.422 7.09 1.424 7.00 0.908
4 1.730 1.760 1.71 1.762 1.87 0.881
5 2.243 2.278 1.54 2.284 1.83 0.899
6 2.503 2.490 0.51 2.485 0.72 0.870
7 2.808 2.819 0.38 2.816 0.28 0.895
8 3.406 3.455 1.45 3.461 1.61 0.867
9 3.949 3.808 3.58 3.816 3.38 0.774
10 4.536 4.610 1.64 4.622 1.89 0.793

Note: Error %ð Þ ¼ jfanalysis � fexperimentj=fexperiment � 100%.
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Fig. 14. (a) Sensitivities of the initial model and the models calibrated
using SGA and GAHAwith respect to the Young’s modulus of the steel
girders; (b) relative errors between the measured and simulated deflec-
tions when the truck was loaded at 1/4 point

© ASCE 04017049-12 J. Bridge Eng.

 J. Bridge Eng., 2017, 22(8): 04017049 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
U

N
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/0
9/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



where u = vector of uncertainty parameters of the structure; and
p Mi uð Þ½ � = initial (prior) probability of each model when the uncer-
tain parameter has a prior distribution based on engineering and
modeling judgment. Because each model fragment is sampled
individually, the prior probability of each model equals the prod-
uct of multiplying each model fragment. p D=Mi uð Þ� �

presents the

likelihood function, which can be presented as p xjuð Þ ¼QNm
s¼1 pðbf sju Þp bf ju

	 

(Zhou 2008), in whichbf s and bf s are meas-

ured frequencies and mode shapes.
Pn

i¼1 p D=Mi uð Þ� �
p Mi uð Þ½ � is

a normalizing constant called the Bayesian factor, which can be
regarded as the marginal probability distribution. Using the
Metropolis–Hasting (M-H) algorithm, the method begins by

selecting a starting point u i. A sample is drawn from the proposal
function q(x,y). The proposal function is assumed to be the form
of a normal distribution. The acceptance ratio can be calculated
by Eq. (6), as follows:

a xt; ytþ1ð Þ ¼
p ytþ1ð Þq xt; ytþ1ð Þ
p xtð Þq ytþ1; xtð Þ (6)

The proposed sample is accepted with a probability of min
(1.0, a) (Dubbs 2012).

In this study, MATLAB software was used for MCMC-approach
coding. Based on prior experience, the prior distribution is shown in
Table 5, where Ec, Es, Ed, Ep, and Th represent previously defined
uncertainty parameters. The Markov chain consisting of 1,000

Table 5. Prior and Posterior Distribution of the Model Fragments

Model fragment Initial value Prior distribution Maximum posterior estimate Change (%)

Ec 3.74� 104 MPa N(1.0,0.2) 4.06� 104 MPa 8.56
Es 2.27� 105 MPa N(1.0,0.2) 2.08� 105 MPa –8.37
Ed 6.86� 104 MPa N(1.0,0.1) 6.68� 104 MPa –2.62
Ep 4.64� 104 MPa N(1.0,0.2) 4.17� 104 MPa –10.13
Th 0.20 m N(1.0,0.1) 0.20 m 0

Fig. 15. Identified physical parameters of model fragments in the Laihua Bridge model: (a) Ec denotes the modulus of the concrete arch ribs; (b) Es

denotes the modulus of the steel arch ribs; (c) Eb denotes the modulus of the bridge deck; (d) Ep denotes the modulus of the pedestrian deck; (e) Th
denotes the thickness of the pedestrian deck

© ASCE 04017049-13 J. Bridge Eng.

 J. Bridge Eng., 2017, 22(8): 04017049 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

H
U

N
A

N
 U

N
IV

E
R

SI
T

Y
 o

n 
06

/0
9/

17
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



samples was generated to present the likelihood function. The meas-
ured 10 modes were used for the MCMC calculation. The posterior
distribution of the model fragment can be estimated using Fig. 15, in
which the histogram denotes the probability-density functions
(PDFs) obtained from MCMC sampling, the solid red line denotes
the PDFs through curve fitting using the normal distribution, the
dashed curve-fitting line denotes the maximum a posteriori estimate,
and the solid curve-fitting line presents the prior distribution. The pa-
rameter-identification results are presented in Table 5, which shows
that they are close to the single-model updating results.

Conclusions

This paper presents the results of a complete St-Id study on a long-
span concrete-filled steel tubular bridge, with a focus on mitigating
various uncertainty factors in the initial model. By systematically
performing full-scale AVT and static loading tests, the physical
properties in the FE model were updated in detail through calibra-
tion using two different optimization methods. Based on the
research results, themain conclusions are as follows:
1. After an initial 3D FE model was established, a careful investi-

gation of the critical bridge members and the interaction of the
bridge deck and arch ribs was performed to mitigate modeling
uncertainties. A sensitivity analysis considering the results of
both static and modal tests is a powerful means of identifying
highly uncertain parameters. Given that epistemic uncertainty
governs the behavior of long-span bridges in St-Id, the applica-
tion of an analytical process consisting of precise 3D FE mod-
eling and field tests is helpful for the reliable St-Id of complex
real structures.

2. Because of a number of missing modes or spurious modes that
can appear or disappear depending on the preprocessing and
postprocessing techniques used, various OMA techniques were
used to reduce the measurement errors induced by signal proc-
essing. The results of two independently applied methods
(RDþCMIF and SSI) showed excellent agreement, confirming
the overall applicability of the AVT and OMA procedure.

3. After model calibration using two different artificial intelligence
algorithms (SGA and GAHA), the optimal values of the parame-
ters were identified to avoid the parameters tapping into local
minima. The high-resolution bridge FE model was constructed
in Strand7, which interfaced with three optimization techniques
in MATLAB to update the multiple bridge parameters automati-
cally. Among the updated models, GAHA showed the best
agreement with the AVT results and the best performance in a
modal admissibility check. After calibration, the average error
between the analytical (GAHA) and experimental frequencies
was reduced to 2.42%, and the maximum relative error on the
static load deflections was reduced from 7.35 to 3.22%.

4. The multimodel St-Id method was used to evaluate the physical
parameters of the bridge to again validate the accuracy of the
single-model updating method. The Bayesian inference strat-
egy was introduced along with the Monte Carlo sampling
method to generate 1,000 FE models. The posterior distribution
was calculated, and the inference results were close to the
updated physical parameters generated by the single-model St-
Id method.
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