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Abstract. A new drop hammer was designed and used for multiple reference impact testing of two 
bridges. The drop hammer utilizes a multiple-rebound control system for successfully applying a 
single impact with repeatable high-level force for bridge testing. Signal analysis results indicate that 
the drop hammer provides a higher signal-noise ratio and a better coherence even when the response 
signals are subject to pollution due to traffic on the bridge. Modal flexibility was computed by using 
the impact data from the drop hammer, and meaningful deflected shapes could be generated 
demonstrating the potential of the envisioned structural assessment system. 

Introduction 

According to the U.S. Federal Highway Administration, over 33% of the 604,485 bridges in the US 
are more than 50 years old, among which 43% are either structurally deficient or functionally obsolete 
[1]. Given the scale of this problem and the potential enormous cost, wholesale replacement is not 
realistic. This places significant emphasis on proper diagnosis/prognosis and effective intervention. 
To augment visual inspection and improve reliability, structural identification (St-Id) has been 
explored as a means of characterizing constructed systems from a mechanistic and quantitative 
standpoint [2]. 

In order to realize a rapid impact test on a bridge without stopping the traffic on all lanes, a Global 
Structural Assessment (GSA) system is envisioned to rapidly perform Single Impact Multiple Output 
(SIMO) testing. The GSA system utilizes a trailer equipped with an impact device and is pulled by a 
small truck along a lane or the centerline of a bridge. It is hypothesized that the GSA system will 
execute a series of independent SIMO tests as it traverses a bridge, each test delivering an impact and 
capturing the responses of the structure through an array of sensors in the vicinity of the impact. While 
each SIMO test may be processed independently to obtain local flexibility coefficients as well as the 
deflection basins along the measurement points, it may also be possible to artificially stitch multiple 
SIMO tests together and process them in an integrated manner to obtain more complete flexibility 
information [3]. 

The impact force envisioned for the GSA system would have magnitudes between 13 and 26 tons 
and would deliver impacts with a high degree of repeatability. Such a large level of impact force is 
considered desirable in order to provide a higher signal-noise ratio for a test and possibly mitigate the 
influence of noise due to any traffic during the impact. Further it was important to deliver a single 
sharp impact. In this paper, a GSA system based on a drop hammer with rebound control, and its 
applications for impact testing of two bridges named as Bridge A and Bridge B are reported. Test 
results demonstrated the feasibility of the concept, and show that the drop hammer was more robust 
and reliable in comparison to a traditional instrumented sledge hammer. 

Rebound Controlled Drop Hammer 



 

A Rebound Controlled  Drop Hammer is designed to provide large sufficient robust impact force for 
the bridge test. An adjustable heavy moving mass drops from an adjustable height and a PCB 200C50 
load cell (0.10mv/lb, <50000lb) with a medium polyurethane impact tip (Model 084A32) provides an 
impact on the surface of the deck [3]. Since the impact carriage bounces off the bridge deck, several 
impacts occur. The rebound control system aims to stop these multiple impacts and consists of a brake 
system activated by a control system that tracks the position of the impact carriage (Fig.1). The brakes 
are engaged by pneumatically activated springs that have a maximum response time of 0.05s. The 
brakes are released when the air pressure drops below 5.52e5Pa (80psi) which is achieved through a 
computer controlled 3-way valve. Upon detection of zero velocity at the apex of the first rebound, the 
3-way valve is activated, which in turn initiates two quick exhaust valves that rapidly purge the air 
pressure and engage the brakes [4]. 

Bridge A Test 

Bridge A was built in 1983 in New Jersey, US. Each direction of the bridge has four lanes and a 
sidewalk, and each direction comprises four simply supported spans using a standard steel stringer 
design that consists of eight girders. A series of fatigue cracks, bearing and joint deterioration and 
very high vibration amplitudes under traffic loads were observed. 

Data acquisition and instrumentation layout. Truck load test was conducted on the Southbound 
Span 2 to measure the deflection basin of this bridge. Several controlled static-load tests with 3 empty, 
3 full and 6 full trucks were positioned on the bridge and displacement were captured through 12 
displacement transducers. The displacement sensors were located on Southbound Span 2 in a 
rectangular grid (Fig. 2). These locations coincide with other modalities of instrumentation including 
strains and accelerations. Distributed data acquisition was used for field test, and the system consists 
of several small DAQs mounted on the structure, as opposed to a single DAQ on the ground. National 
Instruments CompactRIO (cRIO) model line was selected for the basis of the distributed data 
acquisition system. A program written in Lab View has been deployed to run on any NI hardware as 
well as on a PC to provide intuitive, real-time visualization of the data during the test, including 
spatial variation [3].  

 

                               
Fig. 1 Rebound Controlled Drop Hammer.          Fig. 2 Instrumentation of Southbound Span 2 

 
Signal quality check and modal analysis. The sampling frequency was set at 3200 Hz and FFT 

points were set as 32768. During the test the 4th lane between girder 6 and girder 8 remained open to 
the traffic, so impacts were applied during traffic intervals to avoid uncontrolled vibrations by 
vehicles. Reciprocity of the FRF’s between point 11 and point 21 when traffic noise was avoided is 
shown in Fig.3, revealing that the drop hammer provided robust coherence and reciprocity while the 
sledge hammer reciprocity and coherence were poor. 
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Fig. 3 Reciprocity provided by (a) Drop Hammer and (b) Sledge Hammer 

 
Modal flexibility and truck load surface calculation. The first 9 modes within 0-20 Hz are 

shown in Fig.4. The CMIF method was utilized for modal parameter identification and the singular 
value plot that was used for CMIF analysis is shown in Fig.5 (a).A preliminary correlation between 
deflected shapes along Girder 3 measured during the truck-load test and simulated by modal 
flexibility is shown in Fig.5 (b), revealing the promise of rapid impact testing under high level 
repeatable impacts for objective condition evaluation of typical bridge structures. 

 

 
 
 
 

Bridge B Test 

The Bridge B is also located in New Jersey, US. It consists of three spans and carries four lanes of 
traffic in each direction. It has a roadway width of 12.80m from curb to curb and concrete sidewalks 
are present on each side of the bridge with widths of 10.67m. Each span consists of a reinforced 
concrete deck on seven simply supported rolled steel I-beams with partial-length welded bottom 
flange cover plates spaced at 2.18m. The substructure was composed of reinforced concrete 
abutments and hammerhead type piers. The test segment of the bridge consisted of one half of a single 
span. Traffic control allowed the two lanes included in the test segment to be blocked from traffic, 
while allowing traffic to proceed on the other two lanes. 

Hammer Impact Test. The local impact test was conducted by using a Drop Hammer. The 
southbound lanes of the 1st span of the bridge were selected for the impact test by traffic control. A 
dynamic signal acquisition module (National Instruments NI9234) with a reconfigurable control and 
acquisition system (CompactRIO) was used to collect the dynamic data. The ModalView software 
developed by ABSignal Inc. was utilized for signal processing, frequency analysis and modal analysis. 
25 PCB 393A-03 accelerometers were installed on the top surface of the deck. The sensor layout, 
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Fig. 4 Analysis results for the first 9 
modes for the South bound span2. 

Fig. 5 (a) CMIF singular value plot; (b) Correlation 
of displacements measured under truck-loads and 
simulated by modal flexibility along Girder 3. 



 

which consisted of 21 accelerometers, was designed to ensure that a relatively dense and regular 
distribution of responses was captured spatially (Fig. 6). Three additional sensors were roved around 
with the impact device to capture the acceleration at the driving point by using various averaging 
techniques [5]. 

 

 
Fig.6 Instrumentation layout for the bridge B test 

 
Signal Processing and Modal Analysis. The drop hammer had a force level of around 80 kN 

which induced a peak bridge response of around 2.05g. The raw time histories were preprocessed by 
adding the rectangular and exponential windows to eliminate the effects of leakage. The windowed 
time histories are then transformed into auto and cross power spectra using a 16,384 point FFT.  

SISO, SIMO and MIMO Modal Analysis. The GSA system will provide a series of 
independently obtained SIMO tests as it traverses a bridge, with each test delivering an impact and 
capturing the response of the structure through an array of sensors in the vicinity of the impact. In this 
paper, four scenarios of the modal flexibility analysis were conducted to simulate the GSA working 
status. Four typical scenarios are designed including SISO, SIMO, MIMO, and global cases. All four 
scenarios are used to develop the modal flexibility coefficient at point 10 for comparative purposes. 
The identified modal flexibility coefficients of point 10 for different cases are listed in Table 1.  

 
Table 1 Modal flexibility coefficient at point 10 in different cases (m/N) 
Global SISO SIMO MIMO 
1.36e-08 1.32e-08 1.33e-08 1.35e-08 

 
Finite Element Modeling and Validation. After modal flexibility has been obtained, the next 

challenge is to evaluate the reliability of each modal coefficient shown in Table 1. In the envisioned 
application of the GSA system, time/cost requirements limit the application of the truck load test on 
the bridge. 

In this case, a truck load test was not conducted. Without the static test, an a priori FE model was 
developed to provide a reference for the comparison of modal flexibility (Fig. 7). The first 9 modes 
within are shown in Fig.8. Along with physical properties of the different bridge components, the 
boundary conditions are generally considered to have significant influence on the modal parameters 
of the FE model. Therefore, four different boundary conditions were modeled including pin-pin, 
pin-roller, fixed-fixed and spring-spring. To extract the static flexibility coefficients a unit load was 
applied at point 10 and the resulting displacements corresponded to the flexibility coefficient (Table 
2). While this approach to evaluating the accuracy of the modal flexibility estimates is admittedly not 
as convincing as a static truck load test, it does provide a very promising independent correlation with 
the impact tests.  



 

(a) (b) 
Fig. 7 Finite element model for the 1st span of bridge B (a) Top view (b) Bottom view 

 

 
Fig. 8 Measured first 9 modes in global test by drop hammer 

 
Table 2 Static flexibility coefficient at point 10 in different boundary conditions (m/N) 
 Pin-Roller Pin-Pin Fix-Fix Spring-Spring 
Static 

flexibility 1.31e-08 7.71e-09 7.08e-09 1.30e-08 

 
Substructure integration. After confirming the successful identification of the modal flexibility 

coefficient at point 10, the proposed substructure integration procedure was employed to stitch 
together two independent SIMO tests. As seen in Fig 6, two substructure tests were performed at point 
10 and point 14, each surrounded with a subset of sensors to measure the response of each 
substructure. Therefore, two SIMO substructure analyses were conducted to extract the local modal 
flexibility. The first 9 modes were selected using Peak Picking from the CMIF singular value plot, 
shown in Fig.9 (a), (b), obtained from the CMIF algorithm. The global modes are then assembled as 
shown in Fig.10. It is shown that the natural frequencies of the two substructures are similar and only 
vary by a maximum of 2%. The majority of the mass normalized mode shapes can be constructed by 
simply connecting the two substructures.  
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(b) 
Fig. 9 (a) Peak-Picking in CMIF SV figure for Substructure 1 and (b) Peak-Picking in CMIF SV 

figure for substructure 2 
 



 

 
Fig. 10 Mode shapes integrated by the two substructures 

Conclusions 

A rebound controlled drop hammer was successful in providing a repeatable single high-level 
impact force exceeding 75 kN with a bandwidth up to 100 Hz. By using this impact device, MIMO 
impact tests were conducted on two bridges. Even when the response signals were polluted by traffic 
noise, the rebound controlled drop hammer provided robust reciprocity and coherence due to large 
signal-noise ratio. Much work remains for an automated application of the drop hammer for reliable 
modal flexibility such as the integration or patching of several SIMO test results to serve as a MIMO 
test. Eventually such GSA systems may become an essential prelude to visual inspections, directing 
the inspector to possible areas of concern implied by any anomalies or changes in flexibility. 

Acknowledgement 

The authors express their deep appreciation to Dr. A. Emin. Aktan and Dr. Franklin Moon, and to 
our partner Dr. John Prader, Dr. Jeffrey Weider, Dr. Nathan Dubbs, Dr. Jian Zhang, John Divitis, 
David Masceri, Adrienne Deal in Drexel Intelligent Infrastructure Institute (DI3) for their support. 
Project supported by Hunan Provincial Natural Science Foundation of China No: 12JJ4053. 

References 

[1] FHWA: National Bridge Inventory. U.S. Department of Transportation, Federal Highway 
Administration. (2011). 

[2] ASCE: Structural identification of constructed systems: a state-of-the-art report. ASCE-SEI 
Structural Identification of Constructed Systems Committee, Reston, Va. (2011). 

[3] Y. Zhou, J. Prader, J. Devitis, D. Masceri, A. Deal, F. Moon, A. E. Aktan. Application of rebound 
controlled drop hammer for multiple reference impact test on bridges. EVACES 2011: Experimental 
vibration analysis for civil engineering structures, Varenna, Italy, (2011). 

[4] J. Prader. Rapid impact modal testing for bridge flexibility—towards objective condition 
evaluation of infrastructures. Drexel University, doctoral desertation. (2012). 

[5] Y. Zhou, J. Prader, J. DeVitis, A. Deal, J. Zhang, Fr. Moon, A. E. Aktan. Rapid impact testing for 
quantitative assessment of large populations of bridges.  SPIE Smart structures/NDE-For the latest 
research on smart sensors, NDE, Aerospace systems, energy harvesting, San Diego, California, March 
6-10. (2011) 


	Multiple Reference Impact Testing for Bridge Assessment with Drop Hammer
	Yujuan Liao1, a, Yun Zhou2, b, Peng Qin2, c
	Introduction
	Rebound Controlled Drop Hammer
	Bridge A Test
	Bridge B Test
	Conclusions
	Acknowledgement
	References

