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ABSTRACT 

 

The correlat ion of the measured static and dynamic data with the numerical model simulat ion is an important 

aspect in the structural identification. Since there are various uncertainties existed in measurements and models, 

many models’ predict ions may fit measured behaviour, but only a small part of models are reasonable models. 

Traditional model calibration methods may fail to generate the correct model because of the uncertainties and 

their compensation. A multiple model approach incorporates uncertainties and modeling assumptions in analysis , 

thus a two-span reinforced concrete (RC) beam was taken for example. Five cases of static and dynamic tests 

were conducted on the beam with the different extent of the damage on the beam. Thousands of the beam 

models starting from a general parameterized finite-element (FE) model were utilized for structural behavior 

estimation. The degree of separation between models  measured using Shannon’s Entropy function, from which 

the best location is chosen considering the entropy of candidate models is the largest. 11 in 1000 models were 

selected via modal frequency threshold limit strategy to rationally predict the static deformation of the tested 

beam.  The tests demonstrated the applicability of the multimodel approach for the structural identificat ion and 

performance monitoring of real structures. 
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INTRODUCTION  

 

System identification involves determin ing the state of a system and the value of system parameters through 

comparisons of predicted and observed responses. Model updating is the key step in system identificat ion. The 

purpose of static and dynamic load tes ts is to tune model parameters such that the predictions fit measured data. 

However, model updating may not bring out trustworthy informat ion about the behaviour of a structure. The 

ASME committee for verification and validation recommends that an updated model should only be used for 

comparison purposes, an updated model is also not valuable fo r observing the evolution of structural properties. 

Traditional model updating method is to modify the most sensitive physical parameter v ia one physical model, 

and the key problem is whether the initial fin ite element (FE) model can present the real structure property. If 

the init ial structural model is not correct, even the most accurate model updating process will be no meaning. If 

the structural model is correct, different kinds of errors and the error compensations would generate wrong 

model which has large differences with the actual structure. By fully understanding different kinds of errors, the 

multip le model method will be utilized for continuous beam analysis. A key aspect of this methodology is the 

generation of a population of candidate solutions in the feasible domain whose objective function values lie 

below a threshold.  

In the last 15 years, a research team led by Professor I.F.C Smith in EPFL-Swiss Federal Institute of Technology 

conducted a series of researches on mult iple model method. In 1998, Raphael et al. (1998) described a hybrid 

reasoning system for complex diagnostic tasks in structural engineering. The pro ject combines results from 

research into compositional modelling with model reuse for improving the quality of diagnosis through a 

systematic consideration of feasible models for exp lain ing observations. In  2005, Raphael et al. (2005) made 

use of data mining techniques to improve the reliability o f identification , and a stochastic global search 

algorithm called PGSL is used to minimise the cost function that evaluates the difference between 

measurements and model predictions.   In 2005, Raphael et al. (2005) tried to define a population of candidate 

models that result in such differences being below threshold values that are determined by the magnitude of 

modelling errors. In  2008, Smith et al. (2008) and Saitta et al. (2008) presented an analysis of error sources that 

are used to define model populations, data mining techniques such as principal component analysis and k-means 

clustering combined to interpret model p redictions.  In 2010, Goulet et al. (2010) used multimodel approach for 

structural performance monitoring of the Langensand Bridge in Lucerne, and the tests  demonstrate the 

applicability of the mult imodel approach for the structural identification and performance monitoring of real 
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structures. In 2010, Saitta et al. (2010) studied feature selection to system identificat ion, the search is performed 

using stochastic sampling and the classification used a support vector machine strategy.  

By analyzing different kinds of uncertainty sources and fully understanding the limitation of tradit ional unique 

model methodology, this paper made an extensive analysis on multip le model method. Based on probability and 

statistics method, a set of FE models were utilized  to anticipate the responses of the structure. It  was not simply 

looking for the most optimized model, while the purpose was to look for the most suitable model from the 

model cluster which  can rationally address the actual structural characteristic. Mult iple model identificat ion can  

predict the possible reg ion of response, which can  help to improve the reliability of structural identification. For 

the research purpose, an unequal two-span continuous beam was chosen for static and dynamic experiment 

study. To compare with simply supported beam, a two span continuous beam was suitable for multip le model 

analysis because of different uncertainties were existed in the model. 

 

REINFORCED CONCRETE CONTINUOUS BEAM TEST 

 
Continuous Beam Design 

 

The experiment was conducted in the Structural Laboratory of Hunan University. A 6.8m reinforced concrete 

continuous beam with the cross section of 180mm*350mm was designed as shown in Figure 1. The ratio of long 

span to short span is 2, and C40 concrete was designed for the beam with the density of 2450kg/m
3
. Three 

12mm HRB 400 reinforcing bars were located at the upper and the bottom section with the reinforcement rat io 

of 1.91%.  8mm HPB 235 stirrups were arranged in the spacing of 150mm along the beam while  100mm nearby 

the supports.  

  
Figure1. (a) Reinforcement layout of the continuous beam (mm); (b) Instrumentation layout of the displacement 

and strain gages for static test  

 
Static Load Test   

 

The continuous beam was loaded steadily by increased static loads to produce damage in different states. The 

loading setup and instrumentation layout were demonstrated in Figure 2. Two boundary supports were designed 

as steel pin and roller while the middle of the support was set as a roller, the balance of which was adjusted by 

the hydraulic jack and force sensor. A steel girder was utilized to distribute the loading to the tested beam with 

the force distribution ratio of 2:1. The static deformation of the beam was tested by 13 centimetres. The concrete 

and steel strain were tested by 37 strain gages, most of which were d istributed along the upper and bottom 

surface of the beam, while on three important sections such as the middle support or two loading points the 

strain gages were instrumented along the height of the section. Another 8 strain gages were utilized to measure 

the steel strain at upper three key sections.  

 

Multiple Reference Impact Test 

 

Multiple reference impact test was conducted on the continuous beam. A hammer was utilized to produce 

impact signal, and another 13 accelerometers were equidistantly instrumented on the top of the beam to receive 

the acceleration signals. The signal was collected via Sing laCal DP730 device at the sampling frequency of 

4096 Hz. 11 points were impacted for 6 times at each point, and 13 accelerometers were ut ilized to collect the 

signals simultaneously. CMIF method was used to identify the possible modes in Singular value figure as shown 

in Figure 2. The frequencies and damping ratios of 5 damage cases were listed in Table 1. It can be found that 



basically the natural frequencies decreased with the increment of damage extent, and the damping ratio 

increased to a limited extent.  

 (a)   (b)  
Figure 2. (a) Mode identification by CMIF method; (b) MAC value by CMIF method  

  
Table 1. Identified modal parameters by CMIF method 

Modal para. Ref. State Dam. State I Dam. State II Dam. State III Dam. State IV 

1
st

 

Mode 

Freq./Hz 36.39 36.01 35.14 34.18 31.22 

Damp. /% 2.23 2.55 2.36 2.63 2.55 

2
nd 

Mode 

Freq./Hz 69.53 70.98 71.13 69.86 59.73 

Damp. /% 2.58 2.88 2.84 2.96 3.35 

3
rd

 
Mode 

Freq./Hz 98.26 98.65 98.90 96.82 92.26 

Damp. /% 2.21 2.58 2.93 3.39 5.25 

4
th

 

Mode 

Freq./Hz 122.51 123.15 121.37 119.33 104.36 

Damp. /% 2.63 2.05 2.88 2.26 3.53 

5
th

 

Mode 

Freq./Hz 146.13 144.43 142.33 139.13 121.98 

Damp. /% 3.91 2.57 2.24 2.29 4.36 

6
th

 
Mode 

Freq./Hz 184.63 184.56 181.32 179.72 172.29 

Damp. /% 2.13 2.64 3.01 2.48 6.39 

7
th

 

Mode 

Freq./Hz 208.63 209.93 207.07 201.88 181.77 

Damp. /% 2.29 2.16 2.73 3.21 3.89 

8
th

 

Mode 

Freq./Hz 275.33 266.87 264.01 255.47 233.50 

Damp. /% 1.48 1.47 1.38 1.44 2.64 

 

OPTIMIZED SENSOR LAYOUT BASED ON MAXIMIMUM ENTROPY METHOD  

 

The concept of entropy comes from Thermodynamics, and it is proposed by German physicist Clausius in 1855. 

Shannon firstly introduced the concept of entropy into information theory, in which it was used to evaluate the 

uncertainty of the parameters. The accuracy of instrumentation arrangement has large influences on the 

reliability  of structural identification. When the number of model parameters is unlimited, more instrumentation 

points may result in  more accurate identification results.  But when the instrumentation point is limited, some 

measurement points will not be sensitive to the structural response, which may easily result in wrong model 

fortunately matches test results. The optimized sensor layout for unique model method tried to generate the 

robust measurement result via minimum measurement point, but the purpose of optimized sensor layout for 

multip le mode method is to use limited arrangement point to realize the largest degree of differentiat ion. Robert 

et al. (2005) introduced the maximum entropy theory into mult iple model identification method. The entropy 
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can be used to anticipate the degree of differentiation, and it p rovided the theoretical guidance for rational 

instrumentation as show in Eq.(1). 

H = − ∑ 𝑝i  𝑙𝑜𝑔2 𝑝ii                                                                         (1) 

In which, H denotes entropy value, Pi means the probability in the ith interval. When there are only two 

intervals, Eq.(1) can be written in Eq.(2),  

𝐻 = −𝑝log2𝑝 + 1 − 𝑝log21 − 𝑝                                                            (2) 

The probability pi can not be obtained directly, and the model number Ni in the ith interval was estimated. Based 

on the Theory of Statistic, when the total number of model Ntot tends to infin itely, the frequency in the ith 

interval is close to the probability as shown in Eq. (3), 

𝐻 = − ∑ (
𝑁i

𝑁tot
log2 (

𝑁i

𝑁tot
))n

i=1                                                             (3) 

The entropy value of the tested beam was researched based on static displacement value estimated from FE 

model, and the purpose was to research the rational static test instrumentation. The probability modeling 

method was utilized to generate multip le models  based on the sensitivity analysis results. The elastic module 

and density of RC followed the normal d istribution, while the axial stiffness followed the exponential 

distribution. The parameters of model fragment can be found in Table 2. 

 

Table 2 Parameter selection range for multiple model analysis   

Model 

fragment 

normrnd (mu, sigma) 
Model fragment 

K010^unifrnd(A, B) 

mu sigma K0 A B 

Elastic moduls 

E/MPa 
35000 5000 

Boud. Support 

Stiff. K1/kNmm-1 
105 -3 3 

Density 

ρ/kgm-3 
2450 50 

Mid. Support 

Stiff.K2/kNmm-1 
105 -3 3 

Note：normrnd and unifrnd are normal and exponential function Matlab  

 
The init ial FE model for continuous beam was shown in Figure 3. At first, 4 model fragment parameters were 

generated from the probability distribution function in  Table 2, then 1#-13# displacements were measured via 

static analysis. The anticipated static displacements were analyzed by FE model, accord ing to the maximum and 

minimum boundary value the statistical intervals were divided, then the number of models was counted in each 

interval. Finally the entropy value at different measurement points in RC continuous beam was calculated.  

 
Figure 3. FE model for RC continuous beam 

 

Figure 4 demonstrates the histogram of entropy value based on the static test results, and the optimal rank of the 

displacement measurement point was listed in Tab le 3. It was shown that the maximum entropy was at point 10, 

and the minimum entropy appears at point 1 and point 13.  The main idea of optimal sensor instrumentation was 

to obtain the maximum degree of d ifferentiation from a set of models, and it provided the optimal strategy for 

only limited sensors can be used.  

 
Figure 4. Entropy histogram for different measurement points  



Table 3 The sequence of instrumentation points based on maximum entropy theory 

Measured point 1 2 3 4 5 6 7 8 9 10 11 12 13 

Sequence 12 11 10 9 8 6 2 4 3 1 5 7 12 

 

MULTIPLE MODEL SELECTION BASED ON THRESHOLD LIMIT 
 

A key aspect of this methodology is the generation of a population of candidate solutions in the feasible domain, 

whose objective function values lies below a threshold.  In this section, multiple model selection was conducted 

based on modal parameter select ion. 1000 models were generated to calculate the modal frequencies and mode 

shapes, and the error threshold was listed in Table 4, in which the sensor precision, measurement noise, 

repeatability o f measurement, FE model analysis and error threshold limit are included. 1000 models were 

calculated to generate modal frequencies and mode shapes , and the 1
st
, 4

th
 ,7

th
 and 8

th
 modal frequencies were 

shown in scatter diagram as shown in Figure 5, then the upper and lower thresholds determined by Table 2 are 

also drawn in dashed lines.  

Table 4 Uncertainty sources of error threshold 

Error type 
Mode order 

Bias 1 4 7 8 

Sensor precision / 0.01% 0.01% 0.01% 0.01% 

Measurement noise / 0.12% 0.12% 0.12% 0.12% 

Measurement repeatability ±3σ 0.60% 0.84% 0.72% 0.42% 

Finite element analysis  / 5% 5% 5% 5% 

Error threshold / 5.72% 5.96% 5,84% 5.54% 

 

(a)  

(b)  

(c)  

(d)  

 
Figure 5. Scatter distribution of model anticipated frequency (a) 1st Mode; (b) 4th Mode; (c) 7th Mode; (d) 8th 

Mode 

  
In the figure, it was shown that mode 7 and mode 8 have better d ifferentiation ab ility, among which 33 in  1000 

models meet the threshold requirements of Figure 5. After artificial selection only 11 models are left to predict 

the static displacements .  In  Figure 6, 11 candidate models p redict static d isplacements of the continuous beam, 

and it can be found that the results matched well with the measured displacement. Thereafter, the corresponding 

model parameters were shown in Table 5. 
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Figure 6. Static displacement predictions of 11 candidate models  

 
Table 5.  Physical parameters of 11 candidate models  

Model parameter 1 2 3 4 5 6 7 8 9 10 11 

E/(104MPa) 3.82 3.76 3.79 3.77 3.74 3.85 3.60 3.69 3.84 3.74 3.77 

ρ/(103kg·m-3) 2.42 2.36 2.45 2.40 2.39 2.32 2.33 2.36 2.43 2.35 2.38 

K1/(106kN·m-1) 2.58 1.98 1.80 8.26 3.11 0.75 1.55 0.77 0.94 5.12 1.20 

K2(106kN·m-1) 1.18 0.92 2.74 1.15 3.98 0.44 5.30 1.19 2.29 0.58 0.72 

 

CONCLUSIONS 

 

Multiple model identification method was utilized for structural identificat ion of RC continuous beam.   Due to 

the existence of measurement error and different error compensation, an obvious limitation existed in t raditional 

single model identification method. In this paper, the static tests were conducted on a RC continuous beam to 

produce the damage in different extent, and the static displacement and strain were measured in different 

damage cases. Then multip le reference impact tests were conducted to obtain the modal frequencies and mode 

shapes in different damage stages. The elastic modulus, concrete density and the support stiffness were selected 

for FE modeling, thus Matlab and Strand7 were interfaced to generate 10000 FE models. The maximum entropy 

theory was utilized fo r optimal sensor instrumentation, and the sequence of 13 instrumentation points based on 

maximum entropy theory was listed. Finally, the mult iple model selection based on threshold limit was 

conducted to look for the most accurate model which can predict the structural performance.  
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