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a b s t r a c t

The use of sensitive higher modes in physical structural parameter identification of local members in
a frame system is discussed in this paper. Analytical studies are supported by low-level vibration tests
on a third-scale four-story reinforced concrete frame structure embedded in soil to represent a realistic
foundation system. Preliminary numerical modal analysis are carried out to establish the sensitivity of
higher modes to localized damage in the frame. Damage to one of the elements on the first story of
the frame was simulated by adding a mass to the column and examining the vibration modes before
and after the addition of the mass. Through forced vibration tests and selective placement of strain
transducers, the Poly-reference least-squares complex frequency domain method (PolyMAX) is used
to determine the existence of ‘highly sensitive higher modes’ (HSHMs). An evaluation of the identified
higher modes further enables the identification of physical parameters of the target column element
using a simple minimization scheme. Findings from the present study indicate that physical parameters
of a local element in a frame structure can be identified effectively using HSHMs and that the higher
modes of vibration are more sensitive to changes in local physical parameters than lower global modes.
The identification of physical parameters as outlined in this study can be applied in structural damage
detection.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The existence of structural damage in an engineering structure
leads to the modification of vibration modes. Dynamic testing is
one means of estimating the changes in the modal parameters such
as natural frequencies, mode shapes and modal damping. Natural
frequencies and mode shapes provide a ‘global’ way of assessing
the state of a structure. Dynamics-based damage identification
methods have drawn wide attention due to their efficiency
and ease in implementation. In earlier studies, Cawley et al.
[1] used eigenvalues to identify physical structural parameters.
Salawu [2] reviewed vibration monitoring in structural assessment
procedures and various methods proposed for detecting damage
using natural frequencies. Sohn et al. [3] reviewed structural health
monitoring (SHM) techniques and highlighted future research
areas necessary to advance the field of SHM. However, one of the
problems with damage detection using modal data is the fact that
global eigenvalues and mode shapes are usually insensitive to the
local damage. The local variation in dynamic characteristics cannot
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be identified exactly using global natural frequencies and mode
shapes, especially for large-scale structures.

Higher modes (HMs) in large frame structural systems are
more localized than lower modes (LMs) since HMs often represent
local member vibration characteristics. Mode localization is a
dynamic phenomenon associated with weakly-coupled periodic
structures, and results from small imperfections which perturb
the periodicity. Hence, HMs are generally more significant in
identifying local structural damage. Local modes of a dynamic
system have been used for local parameter identification, for
example, measured vibration frequencies of cables in a cable-
stayed bridge can be used to evaluate tension forces in the cables.

Many researchers have studied higher local modes in engineer-
ing structures. Pierre et al. [4] employed a perturbation method
to obtain local vibration characteristics without global dynamic
analysis of a non-equal span continuous beam. Bendiksen et al. [5]
showed that the disorder of modes can lead to local acute changes
and found that the localization concentrates in large-scale weakly
coupled structure. Cornwell et al. [6] studied mode localization
phenomenon on a spatial reflector. Levne-West et al. [7] tested
a full-scale 12-rib loosely-coupled antenna for various levels of
inter-rib coupling stiffness and excitation force, and validated the
mode localization phenomenon for space structures. Bouzit et al.
[8] conducted experiments on a nominally periodic twelve-span
beam with equal spacing and corresponding disordered beam with
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Fig. 1. Frame Configuration; (a) Photo of the model frame structure; (b) Plan view and dimensions; (c) Elevation of North–South frames (all dimensions are in mm).

randomly spaced supports, and demonstrated that the transmis-
sion of vibration which takes place within the passband frequency
of the periodic beam is greatly hindered when span length ran-
domness is introduced. Mester et al. [9] examined the effects of
imperfections on mode shapes and overall response of a simple
“near”-periodic structure. Cox et al. [10] constructed a space an-
tenna, determined its modal properties for various levels of both
mistuning and inter-structure coupling, and evaluated the proba-
bility and severity of system localization from information on the
system substructure imperfections. Shen et al. [11] indicated that
modal localization phenomenon usually exists in periodic or cy-
cled symmetrical structures, such as large spatial trusses, continu-
ous beams and communicating antennas. Defects in an ideal peri-
odic structure will destroy the periodicity of the structure and may
easily lead to modal localization. Xu [12] utilized the maximum dy-
namic energy principle to identify local damage and parameters in
a frame structure. Qi et al. [13] compared global and local vibra-
tions of a steel bridge with different degree of damage and proved
that HM is sensitive to local damage.

Mode localization and its identification, which are seldom
utilized and reported in civil engineering applications, constitute
the focus of this study. This phenomenon will be measured and
evaluated in a frame structure in this paper. Stable sinusoidal
sweep and hammer-impact excitation will be used to excite
local vibrations of a column in a four story reinforced concrete
frame structure with independent footings on the soft soil. The
Poly-reference least-squares complex frequency domain method
(PolyMAX) will be used to identify modal parameters and
highly sensitive higher modes (HSHM) including local and global
vibration mode shapes will be analyzed. The Euler beam model
with both ends constrained will comprise the numerical model
of the column and local vibration modes will be used to identify
its physical parameters. Results from the study show that HMs
posses localized characteristics while LMs represent the global
dynamic properties of the entire frame, and that HMs can be used
to identify changes in the physical parameters of the local elements
in the frame. The ability to detect such parametric changes has the
potential to be applied in damage detection of structures.

2. Modal localization phenomenon in frame structures

2.1. Description of the experimental model

The experiment was carried out on the soil pit in the Structural
Engineering laboratory at Hunan University in PR China. The
structural model shown in Fig. 1 is a four-story reinforced
concrete frame. Beneath each column is an independent embedded
foundation with a plan dimension of 0.6 m× 0.6 m. Reinforcement

Fig. 2. Rayleigh wave measurement by hammer impact method.

Table 1
Reinforcement data of frame elements

Description Dimensions Reinforcement
(mm) Longitudinal Transverse

Columns 133×133 4–Φ 8 Φ3@30 mm
Beams B1 67×167 3–Φ 8 top Φ3@30 mm

3–Φ 8 bot
Beams B2 83×133 3–Φ 8 bot Φ3@30 mm

2–Φ 8 bot

details of the beam and column elements are given in Table 1.
The floor slab is 30 mm thick and is reinforced nominally with
3 mm diameter bars at a spacing of 30 mm in each direction for
both positive and negative bending as needed. The designed yield
strength of the reinforcing bars is 235 MPa. The excavated depth of
the soil is 1.20 m and beneath this lays undisturbed soil. The pit was
filled with clay soil which was compacted at 20–30 cm intervals.
The density of the clay is 1965.2 kg/m3 with a moisture content of
18.85%. Bearing plate experiments indicate that the static elastic
modulus of the filled powder clay is 48.1 MPa. A three dimensional
soil pressure system TSZ-30B (which is a strain-controlled three-
axis pressure system) is used to measure the shear strength of the
soil. Based on recorded measurements of four soil samples under
different uniform confined pressures, the characteristics of the soil
are: C = 55.8 kPa and ϕ = 8.5◦ based on the Mohr–Coulomb
criterion.

The dynamic characteristics of the foundation are measured by
the impulse excitation method [14]. Three vertical accelerometers
are placed 3 m apart in the direction of the transmitting wave as
shown in Fig. 2 The hammer used can excite a wide-band frequency
response in the soil and transducers are employed to intercept the
Rayleigh waves. If the frequency of the Rayleigh wave is fR, the time
difference for the wave to reach adjacent transducers is ∆t and the
phase difference is ∆ϕ, the transmitting velocity of the Rayleigh
wave vR is defined as

vR = ∆x/∆t = 2πfR ·∆x/∆ϕ. (1)

According to elastic wave theory, the relationship between the
shear wave velocity vS and the Rayleigh wave velocity vR can be



3084 W.-J. Yi et al. / Engineering Structures 30 (2008) 3082–3094

Table 2
Dynamic properties of soil-foundation system

Property Value

Rayleigh wave velocity vR 145.54 m/s
Shear wave velocity vs 156.88 m/s
Dynamic shear modulus Gd 4.837e7 N/m2

Dynamic elastic modulus Ed 1.258e8 N/m

Fig. 3. Numerical model of the frame structure.

written as follows:

vs =
1+ v

0.87+ 1.12v
· vR. (2)

The dynamic shear modulus Gd and dynamic elastic modulus Ed
of the soil are defined as:

Gd = ρv
2
s (3)

Ed = 2(1+ v)ρv2
s (4)

ρ is the density of the soil and v is the damping ratio of the soil.
Assuming a damping ratio v = 0.3, the soil characteristics shown
in Table 2 can be obtained. The elastic modulus of concrete Ec is
evaluated in accordance with the empirical expression given in the
Chinese Code for Design of Concrete Structures:

Ec =
100

2.2+ 34.7/f̄cu
. (5)

In the above expression, f̄cu is the compressive strength obtained
from testing of 150 mm cubes. The computed elastic modulus are
32.65, 31.48, 31.99 and 28.57 GPa, for the first through the fourth
story levels, respectively.

2.2. Numerical model of the frame

A simplified analytical model of the reinforced concrete frame
structure is developed as displayed in Fig. 3. The mass of each slab is

concentrated at the corresponding floor beam. In order to account
for the effect of the floor slabs, the flexural stiffness of the edge and
interior beams are modified to 1.5 EcIb and 2 EcIb, respectively, as
recommended in the Chinese Code. Here Ec is the elastic modulus
of concrete and Ib is the moment of inertia of one beam. Therefore,
the flexural stiffness of the beams and columns in the planar frame
is 5 EcIb and 3 EcIc respectively, in which Ic is the moment of inertia
of one column. The numerical model of the frame structure consists
of 74 beam elements.

The dynamic impedance function proposed by Pais et al. [15]
is used in the analytical model of the embedded foundation slab.
Generally the dynamic impedance function of the foundation is a
function of frequency and can be expressed by a0 = ωB/Vs. The
horizontal, rocking, and coupled horizontal-rocking impedance
functions are as follows:

Kd
Hx = Ks

Hx (G, B, v, L, e) (1.0+ ia0c) (6)

Kd
Rx = Ks

Rx (G, B, v, L, e, a0) (k+ ia0c) (7)

K̄d
HR = (e/B) K̄d

Hx/3 (8)

where Ks is defined as the static stiffness of the foundation, ω
is natural circular frequency, L and B denote half of the length
and width of the foundation, respectively. G is the dynamic shear
modulus of the soil, e is the embedded depth of the slab, Vs is the
shear wave velocity, and k and c are the dynamic stiffness and
damping coefficients of the foundation, respectively.

2.3. Numerical modal analysis

In experimental modal analysis of a regular frame model
with concentrated masses at each story, the lower modes (LMs)
normally correspond to the global vibration modes of the structure,
with the maximum number of modes being equal to the number of
stories in the structure. Hence, for the four-story frame structure in
this research, only those vibration modes higher than the first four
and natural frequencies lower than 500 Hz are considered since
one of the main objectives of the study is to find higher modes
(HMs) that are sensitive to minor changes in localized physical
parameters at the member level rather than at the global structure
level. In this investigation, a column in the first story is treated as
the target member to be identified by the use of higher modes.

An examination of the basic dynamic equation of equilibrium
and the resulting eigenvalue problem reveals that the dynamic
properties of a structure are primarily a function of the mass
and stiffness, and that changes to these parameters alter the
dynamic characteristics of the system. In preparing to develop an
experimental program to examine the effects of these primary
structural parameters (viz. mass and stiffness), a numerical study
is first undertaken. With reference to the frame model shown in
Fig. 3, changes to the local properties of the first floor column
comprising elements 1 through 6 are considered for the following
seven cases: (1) undamaged state of the structure; (2) a 20%
stiffness reduction in element 5; (3) a 40% stiffness reduction in
element 5; (4) a 60% stiffness reduction in element 5; (5) a 50%
increase in the mass of element 5; (6) a 100% increase in the mass
of element 5; and (7) a 150% increase in the mass of element 5.

Results from the numerical eigenvalue analysis corresponding
to the seven cases are presented in Table 3. It is seen that the
natural frequencies of the first four global modes are not sensitive
to local damage (or local variations in mass and stiffness), whereas
the natural frequencies of the 5th and 6th mode show a perceptible
change in vibration properties. In order to compare the mode
shapes resulting from stiffness and mass variations introduced
in Case (2)–(7) with respect to the original frame of Case (1),
the corresponding Modal Assurance Criterion (MAC) values are
determined and shown in Table 4. Changes to the 5th and 6th mode



W.-J. Yi et al. / Engineering Structures 30 (2008) 3082–3094 3085

Table 3
Comparison of natural frequencies (Hz) for three cases

Mode→ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Case 1 8.72 31.07 55.95 78.97 238.86 249.09 397.21 412.61 416.84 440.15 455.81
Case 2 8.68 31.03 55.92 78.96 238.51 248.80 397.21 412.57 416.8 440.12 455.66
Case 3 8.62 30.96 55.88 78.96 237.92 248.36 397.21 412.51 416.74 440.08 455.41
Case 4 8.52 30.85 55.82 78.94 236.67 247.66 397.20 412.41 416.64 440.00 454.99
Case 5 8.72 30.98 55.82 78.90 234.76 247.31 397.21 412.56 416.84 440.14 455.53
Case 6 8.71 30.90 55.69 78.83 230.04 246.48 397.21 412.51 416.83 440.14 455.21
Case 7 8.70 30.81 55.57 78.77 225.26 246.04 397.21 412.45 416.83 440.13 454.83

Table 4
Comparison of MAC value for different cases

Mode number→ 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

MAC(Case1:Case2) 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 1.0000 0.9999
MAC(Case1:Case3) 1.0000 0.9999 0.9999 1.0000 0.9997 0.9997 1.0000 0.9992 0.9993 0.9998 0.9993
MAC(Case1:Case4) 0.9999 0.9998 0.9997 0.9998 0.9989 0.9984 0.9999 0.9966 0.9969 0.9993 0.9968
MAC(Case1:Case5) 1.0000 1.0000 0.9999 1.0000 0.9982 0.9950 1.0000 0.9999 1.0000 1.0000 0.9995
MAC(Case1:Case6) 1.0000 0.9999 0.9997 0.9998 0.9955 0.9793 1.0000 0.9996 0.9999 0.9999 0.9976
MAC(Case1:Case7) 1.0000 0.9998 0.9993 0.9996 0.9925 0.9555 1.0000 0.9991 0.9999 0.9999 0.9938

Table 5
Comparison of DI value

Frequency order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Case 1 0.457 1.226 2.141 2.156 45.028 14.977 0.026 0.091 0.071 0.051 0.137
Case 2 0.458 1.226 2.134 2.145 42.239 14.636 0.026 0.093 0.072 0.053 0.141
Case 3 0.459 1.226 2.123 2.130 38.792 14.099 0.027 0.097 0.074 0.056 0.147
Case 4 0.461 1.226 2.107 2.107 34.489 13.121 0.029 0.103 0.078 0.061 0.158
Case 5 0.457 1.234 2.150 2.156 30.340 11.744 0.026 0.103 0.074 0.054 0.165
Case 6 0.458 1.241 2.160 2.155 25.527 9.542 0.027 0.115 0.077 0.059 0.198
Case 7 0.458 1.248 2.169 2.154 22.954 8.096 0.027 0.128 0.080 0.064 0.237

Table 6
Comparison of ∆ DI value

Frequency order 1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

∆DI2 (Case1–Case3) 0.001 0.000 0.007 0.011 2.788 0.341 0.001 0.002 0.001 0.002 0.004
∆DI3 (Case1–Case4) 0.002 0.000 0.018 0.026 6.235 0.878 0.002 0.006 0.003 0.005 0.010
∆DI4 (Case1–Case5) 0.004 0.000 0.034 0.049 10.539 1.856 0.004 0.012 0.007 0.011 0.022
∆DI5 (Case1–Case6) 0.000 0.008 0.010 0.001 14.687 3.234 0.001 0.012 0.003 0.004 0.028
∆DI6 (Case1–Case7) 0.001 0.015 0.019 0.001 19.501 5.435 0.001 0.024 0.006 0.008 0.061
∆DI7 (Case1–Case8) 0.001 0.022 0.028 0.002 22.074 6.882 0.002 0.037 0.009 0.013 0.100

are marginal but not conclusively perceptible. The mode shapes are
normalized by Eq. (9), which requires the amplitude of the mode
shape vectors:

N∑
i=1
ϕ2

ir = 1 (r = 1 ∼ 11). (9)

In Eq. (9), i is the index of the modal components, r is the
mode shape number, and N is the total number of components. The
first 11 modes for Case (1) are demonstrated in Fig. 4, where the
amplitude of the mode shapes of the beams is relatively small and
therefore not plotted in the figure. The modes of each column of the
frame vibrate as a half sine wave. Moreover, the amplitudes of the
5th and 6th mode shapes corresponding to the first story columns
are much larger than those of other stories. Since the MAC value
is not a reliable measure of identifying modal variations caused
by localized changes, a mode shape diagnosing index is defined as
follows:

DIi =

∣∣Φ1m,i

∣∣(∣∣Φ2m,i

∣∣+ ∣∣Φ3m,i

∣∣+ ∣∣Φ4m,i

∣∣) /3
(10)

∆DI = |DIi − DIR| (11)

Φ1m,i,Φ2m,i,Φ3m,i and Φ4m,i are the amplitudes of the mode shapes
at the mid nodes of the columns of the ith mode in the first,
second, third and fourth story, respectively. DI is a measure of the

contribution of the localized mode (in the present experiment this
corresponds to the first floor where local properties of column
element 5 are modified). Obviously, when DI is large, the local
mode will dominate the vibration shape. In Eq. (11), subscript R
corresponds to the reference configuration which in this case is
the original undamaged structure. Hence ∆DI is a measure of the
change in the local vibration mode.

Pierre et al. [4] indicated that mode shape localization occurs
when the peak ratio of the amplitude of mode shapes of two spans
in a continuous beam is larger than 10. In Table 5, it is observed that
the DI value of the 5th and 6th modes have maximum values larger
than 10, so it can be inferred that these two modes constitute the
localization phenomena in this case. Also, as shown in Table 6, ∆DI
s of the 5th and 6th mode shapes corresponding to the first story
column show the most significant variations, indicating a change
in the state of an element on the first floor of the frame. Moreover,
only the 5th and 6th mode shapes are sensitive to the parameter
variation of the member while the others are not. Hence in this
manner, by identifying the maximum changes in the index ∆DI, it
is possible to determine those HMs that are ‘most’ sensitive to local
mass and stiffness changes.

In order to examine other factors which also influence
the modal localization phenomenon, three different numerical
experiments are carried out: (1) frame with equal story heights of
1.0 m; (2) frame with fixed base and equal story height; and finally,
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Fig. 4. First 11 mode shapes and frequencies (Hz) of undamaged structure.

Fig. 5. 5th and 6th vibration mode shapes for regular frame with equal story
heights.

(3) Fixed-base equal story height frame with elastic modulus of
elements 28–32 reduced by 80%. The 5th and 6th mode shapes
for these cases are shown in Figs. 5–7. From Fig. 5 it is clear that
the mode shape localization phenomenon is weakened when the
first story height is equal to that of the other stories, and the DI
values are reduced to 3–4. In Fig. 6 the amplitudes of the 5th and
6th mode shapes in the first-story are smaller than the remaining
stories because the base is fixed and the corresponding DI values

Fig. 6. 5th and 6th vibration mode shapes for fixed base frame with equal story
heights.

are smaller than 1. In Fig. 7 it is seen that the column of the
frame is similar to an equal span continuous beam, hence when
the stiffness of a span (here this corresponds to the column in the
second story) is decreased, the modal localization phenomenon
occurs in this span. The above numerical simulations show that the
dynamic behavior of columns in a frame structure is analogous to a
continuous beam. Foundation flexibility and element stiffness are
important parameters influencing the localization phenomenon.
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Fig. 7. 5th and 6th vibration mode shapes for fixed base equal story height frame
with reduced elastic modulus in elements 28–32.

Fig. 8. Additional mass attached to target column.

From the above numerical modal analyses it is evident that a
simple way to detect damage in columns of a frame structure is
to determine modes which have relatively large amplitude corre-
sponding to the column to be identified. The natural frequencies
and mode shapes of the identified modes should be sensitive to
local variations in the properties of the column. The next crucial
issue is how to find these modes and whether these modes exist in
reality. To investigate these preliminary findings from the numer-
ical study, the following experimental program is designed.

3. Experimental modal testing of frame structure

3.1. Description of experimental procedure

The model shown in Fig. 1 is subjected to a series of non-
destructive low impact vibration tests before and after the
introduction of localized changes to a column element in the frame.
Stiffness degradation in concrete structures due to damage cannot
be recovered. In order to investigate the sensitivity of HMs to local
property changes, local damage was indirectly simulated in the
first-story column of the frame by attaching an additional mass.
As shown in Fig. 8, steel plates were attached to the surface of the
second element (between point 9 and 10 — see Fig. 9 to identify
these locations) of the column. The steel plate measured 0.2 m ×
0.2 m × 0.03 m and weighed 9.36 kg, which is equal to the mass
of the element. The added mass will decrease the frequency of the
element thereby simulating localized damage in the frame.

First, the structure was excited by hammer impact on the
middle column of frame axis 2 (see Fig. 1(b) for location) to
establish global vibration modes of the base model. A PCB hammer

Fig. 9. Harmonic excitation of point 11 at mid height of column and placement of
accelerometers.

with a sensitivity of 0.23 mV/N was used to deliver the impact, and
numerous accelerometers (sensitivity: 100 mV/g) and an ABACUS
signal analyzer (manufactured by Data Physics Corp) were used
to collect the vibration signals. The frequency range considered is
0–500 Hz. The upper columns (each 1 m high) are divided into 5
segments, while the lower floor column (1.33 m) is divided into 6
segments. The global modal experiment was carried out across the
complete frame height with 22 points on the column and 2 points
on the foundation slab.

Next, a higher-order modal test was carried out on the first
floor middle column of frame axis (2)-(b) (see Fig. 1(b) for axis
location). An electromagnetic oscillator with a maximum exciting
force of 500 N was employed to excite the column at point 11
as shown in Figs. 9 and 10 with stable sinusoidal sweeps. The
points 2 through 14 are used as the measurement points, and
PCB740B02 strain transducers (with sensitivity 52.5 mv/µε) are
used to measure modal strains of points 8 through 14. Among the
measurement locations, points 2, 3 and 4 are located in the middle
of second, third, and fourth story, respectively and these points
assist in distinguishing the mode shapes of the upper three stories
from that of the first story. Points 5 and 6 are employed to measure
the vibrations of axes (A) and (C) to determine whether the three
plane frames vibrate in phase and with the same amplitude. This
vibration test was carried out at a frequency range 100–500 Hz.

The model frame was excited before and after damage
(i.e. added mass) using both the hammer-impact and the
electromagnetic oscillator. The PolyMAX method available in
LMS TestLab modal analysis software [16] is used to analyze
the measured modal parameters. The method first establishes
so-called ‘stabilization diagrams’ to identify the normal modal
frequencies, damping and participator factors. The PolyMAX
method tries to fit high-order models that contain more vibration
modes than present in the data. Next, the true physical modes
are separated from spurious numerical ones by interpreting the
stabilization diagrams. The poles corresponding to a certain model
order are compared to the poles of a one-order-lower model. If
the difference is within pre-set limits, the pole is labeled as stable.
Spurious numerical poles will not stabilize during this process
and can be sorted out of the modal parameter data set [16].
The PolyMAX method provides clear stabilization diagrams and
therefore has the advantage of identifying higher damping and
higher modes (HMs) in engineering structures. In this study, it is
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Fig. 10. Modal test by local excitation: (a) Front view; (b) Side view.

Table 7
Comparison of measured first four natural frequencies before and after damage

Natural frequency number First Second Third Fourth

Natural frequency before damage (Hz) 7.6 25.2 50.2 76.8
Natural frequency after damage (Hz) 7.6 25.1 50.1 76.8
Difference (%) 0 0.397 0.199 0

employed to identify HMs in the range of 100–500 Hz since the
first four global modal frequencies of the model frame are lower
than 100 Hz.

3.2. Experimental identification of higher modes

The first four measured natural frequencies before and after
damage are listed in Table 7 and the corresponding mode shapes
are displayed in Fig. 11. The difference between measured (Table 7)
and analytically computed (Fig. 4) frequencies can be attributed to
the simplifications introduced by aggregating the 3D frame into a
planar frame. As expected, there is little or no influence of local
damage (or local property variations) on global natural frequencies
thus making it impossible to identify local damage using global
modes. Next, the stabilization diagrams generated by the PolyMAX
method are shown in Figs. 12 and 13. In the stabilization diagram,
‘o’ denotes that an apex has not been found, ‘f’ denotes that the
frequency is stable (within the tolerance), ‘d’ indicates that both
the frequency and damping ratio are stable and ‘s’ denotes that all
three parameters (including pole vector) are stable. As shown in
Figs. 12 and 13, higher modes with frequencies larger than 100 Hz
concentrate in many regions and in each region there are about
three modes. These closely-spaced modes are likely induced by
the three planar frames in the measurement direction. Previous
studies have shown that eigen-modes of multi-span continuous
beams are distributed in different regions called ‘passbands’. For
the frame structure considered in this study, when the beams and
columns vibrate as half sine waves, correlating modes can be found
in consecutive passbands. Based on the vibration characteristics of
the beams and columns, Regions I–IV belong to the first passband,
and Regions beyond V belong to the second passband. In this study,
the main focus is on the frequency range lower than 500 Hz; hence
higher passbands above 500 Hz are not tested and analyzed.

As indicated previously, a stable sinusoidal sweeping excitation
is induced at point 11 using the electromagnetic oscillator and the
response signals at points 2–14 are recorded. In order to verify that

the three planar frames are vibrating with the same magnitude,
the frequency response functions (FRF) of selected locations are
examined. Points 11 and 7 are located on two columns of the same
plane frame on axis (B). From the FRF of the data recorded at point
11 (shown in Fig. 14), higher modes are located in the fourth region
(denoted by ‘A’) and the corresponding FRF measured at point 7 is
denoted by ‘B’ in the same figure. It is clear that both columns of the
frame are excited, and the magnitude of ‘A’ is larger than that of ‘B’.
By contrast, as indicated in Fig. 15, the maximum peak of the FRF
of point 11 appears in region ‘C’, and there are no corresponding
peaks of the FRF for points 5 and 6 in region ‘D’, because point 5 and
6 do not lie in the same plane as point 11. Hence it can be concluded
that the FRF diagrams do not include the local vibration modes of
the adjacent columns.

Measured displacement modes and strain modes of middle
column of the frame in the plane of excitation are compared before
and after damage. In all, 15 mode shapes were extracted from the
experimental measurements in the frequency range 100–500 Hz.
The actual number of modes is greater than that obtained in the
numerical simulation since the analytical model was simplified by
merging the three frames of a 3D structure into a single planar
frame. The addition of the mass to the column element results in
decreasing the natural frequencies in area IV. Both displacement
and strain mode shapes are sensitive to the local damage in
the fourth region. A comparison of the frequencies before and
after damage is listed in Table 8. In regions I, II, III and V, the
frequencies do not have noticeable changes. This indicates that not
all of higher modes are sensitive to the changes in local member
parameters. The changes in displacement and strain mode shapes
for selected higher modes are shown in Figs. 16 and 17. The
two mode shapes are measured in two independent experiments.
The mass-normalized modes obtained from the LMS software
are rescaled using Eq. (9) after normalization — note that the
maximum amplitude of the mode shape appears to be the same
in the first story though the modal amplitudes are different in
the upper three stories. Hence, the DI values are calculated and
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Fig. 11. Comparison global mode shapes before and after damage: (a) – (d): Modes 1–4.

Fig. 12. Stabilization diagram of assembled frequency response function before damage (g/N = 10 m/s2/N).
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Fig. 13. Stabilization diagram of assembled frequency response function after damage (g/N = 10 m/s2/N).

Table 8
Comparison of experimentally measured higher modal frequencies before and after damage

Natural frequency
order

5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th /

Before damage (Hz) 106.72 110.82 115.55 139.94 148.02 156.05 193.50 203.20 217.13 247.50 257.34 276.18 333.78 341.05 375.03 /
After damage (Hz) 106.75 110.82 115.52 139.91 147.90 155.88 193.44 203.66 215.40 234.81 238.96 257.91 333.69 340.51 376.70 /
Difference (%) 0.025 0.007 −0.023 −0.026 −0.079 −0.109 −0.030 0.223 −0.795 −5.13 7.143 −6.615 −0.027 −0.158 0.444 /

Fig. 14. Comparison of frequency response functions and phase angle between
points 11and 7 (Notation: FRF = frequency response function; X: measurement
direction; g/N = 10 m/s2/N).

reported in Table 9. The strain mode shapes (Fig. 17) are also
normalized in a similar manner.

From Table 8 it can be seen that the change in ‘sensitive’ higher
modal frequencies (modes 14–16) resulting from the added mass
are about 12–18 times the corresponding changes to global lower
modal frequencies. Also from Table 9 it is observed that the change
in these modes result in a maximum decrease of 29.7% in DI
value. These modes that are sensitive to local changes are referred
to as “highly sensitive higher modes” (HSHMs) and need to be
distinguished from other higher modes so that localized damage

Fig. 15. Comparison of frequency response functions and corresponding phase
angles between points 11, 5 and 6.

Table 9
DI value of 13th–16th measured modal shapes

Mode number 13th 14th 15th 16th

DI (Before damage) 7.61 14.20 2.73 11.90
DI (After damage) 5.58 12.00 2.68 8.36
Change % 26.7 15.5 2 29.7

can be identified through an assessment of the vibration mode
shapes. Hence HM frequencies have the potential to be used in
damage identification of structures.



W.-J. Yi et al. / Engineering Structures 30 (2008) 3082–3094 3091

Fig. 16. Changes in displacement mode shapes before and after damage: (a)–(d): 13th–16th mode.

4. Physical parameter identification using higher modes

Modal parameters of the intact (undamaged, i.e. before the mass
addition) frame are now used to identify the physical parameter
of the local column member. The analytically computed fifth and
sixth modes (shown in Fig. 18) with frequencies of 238.86 Hz and
249.09 Hz have the maximum sensitivities. These computed modes
match well with measured ones in Region IV and correspond
to modes 13 and 14 (see Fig. 16). The 8th–12th modes were
not adequately identified in the measurements. The identified
‘sensitive’ modes will now be used in the identification of physical
parameters of the local element.

In the physical parameter identification process, the first-story
column of the frame structure is idealized as an Euler beam model
with both ends constrained by horizontal and rotational springs

as shown in Fig. 19. At the bottom of the column, kr(G), kh(G)
and khr(G) are foundation impedances which are functions of the
dynamic shear modulus of the soil, G. The horizontal spring kx
and rotational spring kk at the top of the column simulate the
constraints imposed by the beams. The spring constants need to
be calibrated using measured vibration properties. When the two
ends of the Euler beam are fixed, the first natural frequency is
calculated to be 283.85 Hz.

The modal frequencies and mode shapes extracted from vibra-
tion measurements are used to identify the physical parameters of
the equivalent Euler beam and its spring constants. The identifica-
tion process involves minimizing the following objective function
[17]:

f (X) =
1
2

∥∥∥∥rf (X)
rs(X)

∥∥∥∥2

(12)
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Fig. 17. Changes in strain mode shapes before and after damage; (a) 14th mode; (b) 15th mode.

Fig. 18. Computationally simulated “highly sensitive higher modes” (HSHMs); (a) 5th mode; (b) 6th mode.

rf ,i(X) =
λi(X)− λ̃i

λ̃i

with λi = (2πfi)2 (13)

rs,i(X) =
φl

i(X)

φr
i (X)
−
φ̃l

i

φ̃r
i

(14)

In the above expressions, X contains the independent updating
parameters, λi and φi = modal data obtained from the FE model,
whereas λ̃i and φ̃i are extracted from the measured data. The
relative differences are used to obtain a similar weight for
each frequency residual, rf . The superscript r corresponds to the

reference DOF to scale the mode shape, which is the one with the
largest displacement and ‘l’ is any other DOF. The minimization is
achieved through an optimal selection of the variable parameters
X = [E,G, kk, kx] that appear in the above equations. E is the elastic
modulus of the column and G is the dynamic shear modulus under
the isolated footing.

The 15th mode shape with natural frequency of 257.34 Hz is
selected for the optimization of the four parameters G, E, kk and
kx since this mode was the most sensitive to the added mass. The
vibration shapes of the 7 points corresponding to the measurement
points on the column are used. The identified parameters using
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Table 10
Identified parameters using highly sensitive higher modes (HSHMs)

Identified parameter E (N/m2) G (N/m2) kk (N/m2) kx (N/m)

Value 3.45× 1010 1.31× 108 1.02× 109 1.53× 109

Fig. 19. Equivalent Euler beam model with two ends constrained by springs.

the sensitivity analysis procedure described above are listed in
Table 10 and the simulated mode shape is compared to the
experimentally measured data in Fig. 20. The results of the
identification process indicate that most of the parameters, with
the exception of the shear modulus, compare well with the values
in Table 2. The calculated HM using the constrained Euler beam
model is 255.27 Hz, which compares reasonably well with the
measured modal value.

5. Conclusions

Low level vibration testing consisting of hammer impact
and sinusoidal sweeps using an electromagnetic oscillator were
performed on a scale model four-story RC frame structure
to identify both damage and physical parameters in a local
member. Local damage was simulated by an added mass to a
section of column on the lower floor of the frame. An advanced
least-squares complex frequency-domain identification method
‘PolyMAX’ available in the LMS software [16] is used to analyze
the frequency response functions of higher modes before and
after simulated damage. The analytical and experimental results
reported in this paper show that sensitive HMs can be used to
identify localized damage and physical parameters. The following
general conclusions are inferred from the study:

1. In real engineering structures, higher modes often exist in
continuous beam-like structures and they can be found through
experimental modal analysis by changing the physical conditions
such as boundary conditions, support settlement, or changing the
element mass or stiffness. HSHMs can be identified by introducing
such changes, and the modes can be used in identifying physical
parameters of local members in the system. The local mode shape
of a continuous beam is known to be sensitive to the change in
stiffness of the beam (other than a change in the length of the
beam) in an equal span continuous beam, and the same is true for
a column in a frame structure (even though the frame has equal
story heights). Therefore, higher modes can also be used to judge
whether the continuity of the continuous beam-like structure is
broken.

2. The most significant sensitive higher modes for the four-story
RC frame structure were identified. Seven distinct cases of local
member variations were simulated using a simplified numerical
model. A Diagnosing Index was defined to better identify changes

Fig. 20. Comparison of calculated and measured local mode.

in higher modes due to local damage. The length of the member
and its end constraints were found to most significantly influence
mode shape localization in HMs.

3. Higher modes characterize mode shape localization while
LMs reflect global structural vibration modes. Localized mode
shapes can be extracted from the frame’s measured displacement
and strain modes. The PolyMAX method [16] can be used to analyze
the generated frequency response functions in order to identify
distinct non-spurious vibration modes from which HMs can be
recognized and analyzed.

4. HMs concentrate in several ‘modal’ regions of the FRF
diagram called passbands. The order of the passband is identical
to the order of the vibration mode shape of a single member’s half
sine wave.

5. Studies on the model frame with an added mass to simulate
local damage indicate that selected HMs are sensitive to local
changes and these modes are termed ‘Highly Sensitive Higher
Modes’ (HSHMs). These modes concentrate in a small region and
the magnitude of these modes are much larger than adjacent
vibration shapes. HSHMs are found to be good candidates for local
damage diagnosis.

6. The HSHMs in the present study were validated by numerical
simulations. An equivalent Euler beam model with two ends
constrained by translational and rotational springs is used to
identify physical parameters of the local column and associated
foundation. The analytically estimated parameters compare well
with measured data.
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