Downloaded from ascelibrary.org by HUNAN UNIVERSITY on 12/19/13. Copyright ASCE. For persona use only; all rights reserved.

Impacts of Epistemic Uncertainty in Operational
Modal Analysis

Korhan Ciloglu'; Yun Zhou?; Franklin Moon®; and A. Emin Aktan*

Abstract: Field experimentation on constructed systems demands consideration of many mechanisms of epistemic and aleatory uncertainties
as well as human errors and subjectivity. This is especially true in operational modal analysis (OMA) applications that aim to identify the
dynamic properties of a structure. Although statistics and probability theory are sufficient for quantifying aleatory uncertainty and bounding the
resulting errors in OMA results, there is much debate as to whether the same tools may also be used to quantify epistemic uncertainty. This study
explored a framework for better understanding the distinctions and impacts of these two types of uncertainties in OMA and how human errors
and subjectivity may be classified. A physical laboratory model was designed to simulate four key sources of epistemic uncertainty that
represented the primary test variables: structural complexity (changing boundary conditions, nonlinearity), ambient excitation characteristics
(magnitude, directionality, and bandwidth), preprocessing approaches, and modal parameter identification algorithms. The experimental
program employed these variables within a full-factorial design and was carried out independently by two experts. To quantify the impacts of
epistemic uncertainty, an error function termed the uncertainty evaluation index (UEI) was formulated based on comparing the uniform load
surfaces derived from OMA (using pseudomodal flexibility) and the ground truth flexibility obtained from both forced vibration and static
testing. The advantage of the UEI is that it provides a physically meaningful approach to distinguish the importance of capturing various modes
based on their contribution to the flexibility of the structure. The results demonstrated that proven and accepted data preprocessing techniques
and modal parameter identification algorithms can significantly bias OMA results when used in certain combinations under different structural
and excitation conditions. Although caution must be used when generalizing the results of this study, they do indicate that epistemic (or bias)
uncertainty can be far more significant that aleatory (or random) uncertainty in the case of OMA. DOI: 10.1061/(ASCE)EM.1943-

7889.0000413. © 2012 American Society of Civil Engineers.
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Introduction

The overarching objective of the research reported herein was to
establish the influence of various sources of epistemic (or bias)
uncertainty on the reliability of using operational modal analysis
(OMA) to characterize constructed systems. In addition, this study
examined the influence of (1) human errors and (2) the inherent
subjectivity within the process of OMA on the reliability of modal
parameter identification. To satisfy these objectives, two experi-
enced researchers independently carried out a series of OMAs
on the same physical grid model. The testing program consisted
of a full-factorial design with four primary variables: structural
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complexity (changing boundary conditions and nonlinearity),
ambient excitation characteristics (magnitude, directionality, and
bandwidth), preprocessing approaches, and modal parameter iden-
tification algorithms. Although the study reported herein was ex-
clusively carried out in the laboratory, the design of the experiment
and the specific researchable questions at the heart of the study re-
flect decades of field testing experience and the aim to clarify fun-
damental challenges associated with OMA.

Since the late 1980s, the authors have been involved in testing
a wide range of operating bridges using both multireference impact
testing (Raghavendrachar and Aktan 1992) and OMA (Catbas et al.
2007; Grimmelsman 2006; Pan et al. 2009; Zhang et al. 2009) as
experimental tools for structural identification (St-Id). These
applications included numerous short-to-medium span bridges and
a wide range of long-span bridges, including suspension bridges
(Brooklyn and Throgs Neck Bridges), truss bridges (Commodore
Barry and Burlington-Bristol Bridges), and arch bridges (Henry
Hudson and Tacony-Palmyra Bridges). Even with the diversity of
structural form, scale, age, and experimental approach, the one
consistent challenge evident in all of these applications was related
to uncertainty that defied quantification through the use of proba-
bility and statistics. For example, in many of these applications, there
were a number of missing modes (compared with analytical models)
or sporadic modes that appeared or disappeared depending on the
various pre- and postprocessing techniques used. The reasons for
such modes and the reliability of intermittent modes are fundamental
questions that continue to challenge OMA (as their inclusion or
exclusion can have profound effects on the ultimate outcome of
a study). The uncertainty introduced by the presence or lack of
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presence of such modes is difficult to address using probability
theory and represents a key source of epistemic uncertainty. To the
authors’ knowledge, the presence and causes of such uncertainty has
not been systematically addressed in the literature.

The authors believe that the reason this issue has not received
a great deal of attention is that most researchers who engage in OMA
often stop short of trying to reconcile the results with independent
physics-based models. For example, the two most common sce-
narios reported in the literature on OMA involve either the iden-
tification of frequencies, mode shapes, and damping properties
(with no basis for independent comparison), or damage detection
(either during normal operation or after an extreme event). In both
of these cases, the presence or importance of missing or sporadic
modes (or other symptoms of epistemic uncertainty) typically
go unnoticed.

Meanwhile, the convenience of OMA continues to attract
significant interest, which has spawned several large, international
conferences such as the International Operational Modal Analysis
Conference and Experimental Vibration Analysis for Civil Engi-
neering Structures. Along with this interest from researchers,
owners of long-span signature bridges within the United States are
now routinely implementing OMA during vulnerability assess-
ments or preservation planning activities. Although both of these
developments are welcome, and the authors believe there is great
merit in the many applications of OMA envisioned in the litera-
ture, there is a pressing need for a comprehensive investigation to
establish the true influence of the various sources of epistemic (or
bias) uncertainty on the reliability of OMA. The research pre-
sented in the following aims to offer a structure for the debate
surrounding OMA uncertainty and to illustrate, in concrete terms,
the potential influence of epistemic uncertainty to motivate addi-
tional investigations.

Types of Uncertainty

For the research reported herein, the definitions of aleatory and
epistemic uncertainty provided by Oberkampf (2005) were
adopted.

Aleatory Uncertainty

Aleatory uncertainty is an inherent variation associated with the
physical system or the environment, also referred to as variability,
irreducible uncertainty, stochastic uncertainty, and random
uncertainty.

Epistemic Uncertainty

Epistemic uncertainty is an uncertainty that is caused by a lack of
knowledge of quantities or processes of the system or the environ-
ment, also referred to as subjective uncertainty, reducible uncer-
tainty, and model form uncertainty.

Similar definitions have been offered by Ayyub (1997), Haimes
(1998), Ang and De Leon (2005), and Ang and Tang (2006), among
others. According to Ang and De Leon (2005), aleatory and epi-
stemic uncertainties do not need to be separated. However, as
recognized by Oberkampf (2005), it is slowly being realized that
mixing these two sources of uncertainty can result in large under-
estimations of the total uncertainty, especially the uncertainty as-
sociated with system responses. Given this debate, the authors were
motivated to try to differentiate between the impacts of epistemic and
aleatory uncertainties in OMA to allow their relative contributions to
the total uncertainty to be assessed.

Known Sources of Uncertainty in OMA Results

Applications of OMA require measuring ambient vibration re-
sponses of a system followed by various pre- and postprocessing
(i.e., modal identification) techniques. A recent state-of-the-art re-
port by the ASCE-SEI Structural Identification of Constructed
Systems Committee (ASCE 2010) provided an overview of this
experimental approach, including information on sensors, moni-
toring methods, and selected applications as case studies. Both the
ASCE report and the authors’ field experiences indicated that as
the scale and complexity of constructed systems (including their
foundations and soil) increase, intrinsic responses caused by long-
term inputs from the environment as well as ambient responses
caused by operational inputs become increasingly complex. In these
cases, the experimental data and pre- and postprocessing steps of
OMA may amplify such uncertainties, which may ultimately lead to
significant errors and omissions.

The principal sources of epistemic uncertainty that lead to errors
in the results of OMA may be classified as follows.

Structural Complexity

Structural complexity is related to material and geometric non-
linearities and nonstationarities in the system response, initial/
intrinsic forces/displacements, and boundary conditions, as well as
alack of observability, especially related to soil-foundation systems.

Experiment Design

Experiment design is related to sensor density and distribution;
stationary references versus roved sensors; sensor characteristics
such as bandwidth and sensitivity; sensor calibration methods; data
acquisition hardware properties and parameters such as asynchronous
or not; time-and-frequency resolution; bandwidth; record duration;
test setup/execution such as cabling, connections, detection, and fil-
tering of electronic interference and noise; detection and elimination
of bias signal errors; auxiliary measurements of weather and opera-
tional conditions; and the archiving of data and information.

Ambient Excitation

Ambient excitations is related to bandwidth and frequency content,
amplitude, directionality, localization, temperature, and other en-
vironmental effects, and transmissibility of excitation between cou-
pled systems such as bridge superstructures and towers.

Digital Signal Processing and Modal
Parameter Extraction

This is related to windowing, averaging, signal modeling, lineari-
zation, modal parameter identification algorithms, and the influence
of user experience.

In addition to these known and general sources, one should never
rule out sources that are unknown and perhaps unique. For example,
periodic interference caused by CB radios being used by truckers
crossing a bridge that is being tested can cause sporadic noise that
can pollute data if it is not recognized and removed. In contrast,
in some cases, chance events may actually reduce some of the epi-
stemic uncertainty associated with OMA. For example, during the
authors’ testing of the Brooklyn Bridge Towers (Grimmelsman
2006), a microtremor occurred that excited a number of tower
modes that were not visible under traffic-induced ambient vibration.
Such modes proved quite influential in the subsequent St-Id and
seismic vulnerability assessment.
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Although, in general, the modal analysis community has de-
veloped effective strategies for modeling, detecting, and bounding
errors caused by aleatory sources, there has yet to be a systematic
study to investigate and bound errors caused by epistemic sources.
Over the last two decades, there have been several hundred papers
and reports related to health monitoring (e.g., Nayeri et al. 2007;
Vanik et al. 2000), damage detection (e.g., Bernal 2006; Farrar and
Jauregui 1998; Moaveni et al. 2007, 2009), St-1d (e.g., Hazra et al.
2010; Shi et al. 2000; Beck and Katafygiotis 1998), and structural
control of constructed systems published. However, when such
studies addressed uncertainty, the main assumption in many of them
was that only noise and/or other sources of aleatory uncertainty were
present. In these cases, it has become common to employ proba-
bilistic approaches that treat modal parameters and uncertainties as
variables with Gaussian characteristics. Although such an approach
is quite reasonable to address random uncertainty, it may lead to an
incomplete assessment of bias uncertainties, such as missing or
intermittent modes, a lack of observability, or nonstationarity and
local nonlinearity.

The authors believe that perhaps the most appropriate approach
to reducing epistemic uncertainty is St-Id (Moon and Aktan 2006)
through the use of physics-based simulation models. Such an ap-
proach provides an independent source of information for com-
parative purposes. Of course, the process of St-Id may be viewed as
an iterative one in which each successive iteration provides ad-
ditional information (which in turn reduces epistemic uncertainty)
and allows one to move closer to the ground truth. All the while, of
course, aleatory uncertainty remains present and is largely constant.
Fig.1 provides a schematic that attempts to illustrate this process and
the reduction of epistemic uncertainty that should accompany well-
executed applications of St-Id.

The fundamental questions that remain are associated with the
identification of key sources of epistemic uncertainty and the signifi-
cance they have over the reliability of the results of OMA. Even
in cases where a physics-based St-Id is carried out, the authors

Starting point ‘

for first
iteration of ‘
St-1d ‘

hypothesize that epistemic uncertainty is in fact far more significant
than random uncertainty (as illustrated in Fig. 1). The goal of the re-
search reported herein is to examine this hypothesis using an idealized
grid model that allows both the aleatory and epistemic uncertainty to
be controlled and quantified, and the ground truth to be established.

Research Design

The authors designed the research to quantify the epistemic errors
depicted in Fig. 1. A primary challenge encountered during this
study was the inability to characterize the observed errors using
traditional probabilistic approaches. The errors found by following
different paths in Fig. 2 were not associated with slight changes
in frequencies or mode shapes. Rather, the primary errors were
associated with the failure to identify certain modes, which is
consistent with epistemic or bias errors, not random errors. As
a result, this study adopted an approach used frequently in the
nondestructive evaluation community: comparison with a ground
truth measure. To accomplish this, the authors utilized a simple
average error function, termed uncertainty evaluation index (UEI),
which was based on comparing the uniform load surfaces derived
from OMA (using pseudomodal flexibility, Gul and Catbas 2008)
and ground truth multiple input multiple output (MIMO) impact
testing, as well as static testing, to obtain modal flexibility and
validate this by correlating with directly measured static flexibility.
This approach provided a means to distinguish the importance of
capturing various modes in a physically meaningful manner based
on their contribution to the flexibility of the structure.

Test Design and Variables

To examine the propagation of errors caused by uncertainty through
a portion of the St-Id process (Steps 3 and 4 in Fig. 1), a full factorial
experimental program was carried out with four primary test

‘ Starting point
for second
iteration of

\ St-1d Initial epistemic uncertainty

‘Reduction in‘

‘ Epistemic

Uncertainty
|

Remaining epistemic uncertainty

Six Steps of St-Id |
1. Observation and
Conceptualization ) ‘
2. A-priori modeling Six Steps 1
3. Controlled of St-Id
Experimentation
4. Processing and
Interpretation of

data 2
5. Model calibration
and parameter ID
6. Utilization of
model for
simulations

I A EE

"Reduction in ‘
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| Uncertainty | Remaining epistemic uncertainty
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which represents
the true state of
the constructed
system (e.g. M,

Aleatory
uncertainty

Fig. 1. Schematic showing how St-Id may reduce epistemic uncertainty
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variables. The test variables included the type of excitation, structural
boundary conditions, signal processing methods (including averag-
ing, length of averaging time window, exponential windowing, and
signal modeling), and the method of modal parameter identification.
Table 1 and Fig. 2 provide an overview of how these variables were
included within the overall test design, and the following sections
provide more detailed information.

Physical Model and Instrumentation

The physical model utilized for this research was a deck-on-grid
structure simulating a simple-span highway bridge (Figs. 3 and 4).
The dimensions of the grid were 20 by 9 ft, composed of 3 lon-
gitudinal and 14 transverse members. The grid structure supported
a deck, which was made of fiber reinforced polymer. The details of
deck/grid connection and typical cross section are given in Fig. 5. This
model simulated common attributes and behavior characteristics of
conventional deck-on-girder bridges, including substructures sup-
porting a superstructure through bearings, load distribution charac-
teristics, and bandwidth (5-30 Hz). The model permitted introducing
epistemic uncertainty by modifying the boundary and continuity
conditions (e.g., physical change in boundary conditions and/or

1.Excitation Characteristic

I

2.Boundary Conditions

l

3.Averaging method

J

4.Length of average time
window

J

5.Exponential window

]

6.Signal modeling

l

7 Modal parameter
identification method

Fig. 2. Uncertainty coupling tree

Table 1. Test Variables Included in the Experimental Program

changing structural members/connections influencing structural
continuity.)

The instrumentation plan for all tests consisted of 21 unidirectional
vertical accelerometers located at each grid connection (Fig. 6). The
accelerometers used were PCB ICP type (Model 393C), and the
synchronous data acquisition system was an HP VXI Data Acqui-
sition Mainframe (Model E8401A) with Agilent Technologies
(Model E1412A) cards. In addition, an instrumented hammer was
used for impact testing (Model 086C20), and an electromagnetic
shaker was used for generating random forcing functions (APS
Electro-Seis Model 113-HF).

Excitation Characteristics

To examine the influence of different amplitudes and different
spatial/spectral distributions of the excitation, four different types of
excitation were employed. The first placed the shaker under a corner
support (Point 1 in Fig. 6) to simulate a broadband input that was not
spatially distributed. The second employed the shaker underneath
the center of the grid model, which provided a broadband input that
was spatially distributed through the floor system supporting the
columns (piers) of the grid. The third approach employed manual
tapping over the entire superstructure by several individuals to
simulate a broadband but spatially distributed input. Finally, the
fourth excitation employed manual tapping at midspan of the grid
(Point 11 in Fig. 6) to simulate a spatially undistributed, broadband
input. Manual tapping represented a series of impacts resulting in
vibrations with a high signal-to-noise ratio, where response ampli-
tudes were higher than the excitation cases with the shaker.

Boundary Conditions

To examine the influence of structural complexity, three different
boundary conditions were employed. The first and nominal
boundary condition was composed of six steel rollers placed on steel
saddle-shaped plates. The bottom plates were bolted to the 9.525-
mm (3/8-in.) steel plates on top of the support pedestals. The sec-
ond boundary conditions employed were identical to the first, except
that steel plates weighing 108.86 kg (240 lbs) were placed on the
deck above the support locations. The final boundary conditions
employed used neoprene rollers instead of steel to introduce non-
linearity and bounce.

Data Preprocessing

Averaging Methods and Length of Averaged Data Segments
Averaging of time series data to generate pseudoimpulse response
functions (p-IRFs) represents a critical step of output-only modal

Items A

B C D

Al: Localized random
shaker input
A2: Steel roller

Excitation characteristic

Boundary conditions

B1: Distributed random
shaker input
B2: Steel roller + mass

C1: Distributed manual D1: Localized manual
tapping input tapping input
C2: Neoprene roller —

Signal processing Averaging method ~ A3: Random B3: Correlogram C3: Welch’s method —
decrement method
Length of average  A4: 2048 B4: 4096 C4: 8192 —
window
Exponential AS: Without B5: With — —
windowing
Signal modeling A6: FFT B6: Prony’s method — —
Modal parameter identification method AT7: CMIF B7: PTD C7: SSI —
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analysis. To examine the influence of different averaging approaches,
two different techniques were employed: random decrement (RD)
functions and correlation functions. The RD technique involves av-
eraging signal blocks of time series every time certain triggering
conditions are met. The RD technique applied in this research
employed the positive point triggering method as given in Egs. (1)—(3)
(Ibrahim 1977)

Ty = [y =X(t)<a)] (1)
1 N

RDxx(’T) = ﬁ ‘Z:I x(l‘,' + T) [a1 Sx(l,') <a2] (2)
1 N

RDyx (1) = N Z (6 + T)'[al =x(t;) <ay) (3)

Fig. 3. Benchmark laboratory model

(a) Typ. Exterior Connection (b) Typ. Interior Connection

Fig. 4. Grid connection details: (a) typical exterior connection;
(b) typical interior connection

In contrast to RD, correlation functions describe the correlation
between random variables at two different points in time. The auto
(R.y) and cross (R,,) correlation functions used in this research are
defined in Egs. (4) and (5)

1 N—1

Rxx (1) = =, Z:l x(t)x(t; + 7) (4)
1 N—7

Rxy(1) = N> Z:l x(t)y(t + 1) (5)

In addition to the different averaging approaches, three different
lengths of time blocks were considered in the averaging process.
These included segments of 2,048, 4,096, or 8,192 data points.

Exponential Windowing

To prevent leakage, it is common practice to apply an exponential
window to impulse response functions before postprocessing. This
process introduces numerical damping to force the time series to
zero within a specific window by multiplying the signal by a time
varying function. The presence of this numerical damping clearly
affects the extracted damping ratios, but its influence on the re-
liability of extracted modal frequencies and associated mode shapes
(which are of primary interest in applications of OMA) remains an
open question.

Spectrum Estimation of Averaged Signals

To investigate the influence of different methods to estimate the
spectrum of p-IRF, both nonparametric and parametric approaches
were employed. The first nonparametric approach, termed the cor-
relogram method, computed the correlation functions in the time
domain before transferring them into the frequency domain by
discrete Fourier transform (DFT). The second approach utilized
Welch’s periodogram method, which transfers the time blocks into
the frequency domain by DFT before performing the averaging
(Hayes 1996).

The parametric approach employed in this research is termed
Prony’s method (Hayes 1996), which finds an infinite impulse re-
sponse filter with a prescribed time domain impulse response. In
this method, signal x(n) is modeled as the unit sample response of
a linear shift invariant filter having a system function of H(z) with
p poles and g zeros, that is to say, H(z) = B,(z)/A,(z)

Deck

3x2x2/16" Tube

4"x1/4" Plate

4"x3/4"x1/4" Plate

3/8" Dia. Bolts

@@ 0 ® &

Fig. 5. Deck-to-grid connection details
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(p @
1 4 | 7 | 10 | 13 | 16 19
2 5 | 8 | 11 éM g” 20
® )
3 6 9 12 15 18 21
O Output: Accelerometer (Model: PCB 393C) on the deck and support plates
@ Output: Accelerometer (Model: PCB 393C) under the grid
©)  Input & Output: Instrumented impact hammer (Model: PCB 086C20),

Accelerometer (Model: PCB 393C)

Fig. 6. Instrumentation plan

e BE™ _b(1) + bQ2)e™ + - 4 b(g + De ™
(e) - - a(l) + a(Z)e—jW + "'a(p n l)e_jPW

(6)

Animportant decision that needs to be made in the implementation
of Prony’s method is the selection of the model order. For this re-
search, the model order was taken as 128 (p = g = 128) after trying
different model orders and comparing results to impact test results.

Modal Parameter Identification Method

To examine the influence of various modal parameter identification
approaches, three were included within the experimental program:
complex mode indicator function algorithm (CMIF), polyreference
time domain algorithm (PTD), and stochastic subspace identification

¢ (1)

= : : X

fit 0 fim $'(1)
Jar 0 fum ¢>1(n) @™ (n) nxm,

wheref;; = flexibility coefficient at the ith point under the unit load at
point j; w; = ith frequency (radian/second); ¢>k(i) = modal vector
coefficient at the ith measurement point of the kth unit mass-
normalized mode vector; m, = total number of modes; and n =
total number of measurement points. This approach yields an ap-
proximation to static flexibility because of modal truncation. In most
cases, however, this approach is acceptable because higher order
modes do not appreciably contribute to flexibility as a result of the
inverted and squared frequency terms. However, the accuracy of this
approach depends greatly on how accurately the modal scaling
factors can be obtained from a forced vibration or MIMO test.

Pseudomodal Flexibility

Because of the inability to measure the input in OMA, the full transfer
function cannot be captured. As a result, the modal scaling factors that
are necessary for the computation of modal flexibility are unavailable.
To mitigate this challenge, the modal scaling factors from MIMO

(SSI). The CMIF method operates in the spatial domain and involves
the singular value decomposition (SVD) of a multiple reference fre-
quency response function matrix (Shih et al. 1989; Phillips et al.
1998). The PTD method utilizes an autoregressive moving average
based high-order time domain model, and is one of the most com-
monly used high-order parameter identification techniques (Vold et al.
1982; Deblauwe et al. 1987). The SSI method utilizes a state-space
modeling approach and a two stage process to extract modal
parameters from time domain data (Peeters and DeRoeck 1998;
Peeters 2000; Peeters and DeRoeck 2001).

Ground Truth Measure

Although it may appear straightforward to simply employ modal
parameters identified through MIMO impact testing as the ground
truth measure, this approach does not allow the relative importance
of various modes to be assessed. What is required is a global measure
of how well the identified modes characterize the physical system,
so that cases where important modes associated with significant
modal mass and making substantial contribution to modal flexibility
can be distinguished from cases where other modes that do not ac-
count for significant mass are missed. To accomplish this, a modal
flexibility-based index was selected. Flexibility was chosen because
it is a static transfer function representing a universal global measure
of the structural state (Raghavendrachar and Aktan 1992; Toksoy
and Aktan 1994). In this study, the modal flexibility matrix produced
by MIMO impact testing after validating by static load experiments
on the structure was adopted as ground truth.

Modal Flexibility

The transformation of the natural frequencies and mode shapes into
an approximation of the static flexibility matrix is given by Eq. (7)

1

oz 00 61 (1) - ¢m(1)

0 «| : )
0o - L 80 = 0]

M, XM,

impact tests are used to scale the mode shapes identified from OMA.
This process began by validating the mode shapes and frequencies
obtained from OMA by correlating them to their impact test based
counterparts. This prescreening was necessary to filter out computa-
tional modes. Modes with maintenance allocation chart values larger
than 0.85 (with respect to the impact test) were the only ones selected for
use in calculating scaling factors. Maximum allowed variation in modal
frequencies between impact and ambient test was 5%. The definition of
the scaling factors used in this research is given by Egs. (8) and (9)

_ [max(¢) |
(SF) ke (‘pn)k (8)
Imax ()| = [(b)il )

where (SF), = scaling factor for ambient mode shape k identified at a
degree of freedom n, which signifies the largest modal coefficient
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among all degree of freedoms; (¢), = unit modal mass normalized
mode shape from an impact test; and (), = unscaled mode shape
identified by OMA. Because the modal scaling factors for the OMA
are borrowed from a MIMO impact test, the resulting flexibility is
termed pseudomodal flexibility.

Uncertainty Evaluation Index

Although it is possible to simply compare modal flexibility coef-
ficients (obtained from MIMO impact testing) with pseudo-
flexibility coefficients (obtained from OMA) to characterize the
uncertainty, it is more useful to have a single, global measure. To
accomplish this, an index based on the correlation between the
uniform load surfaces (ULSs) computed from modal flexibility and
pseudomodal flexibility was developed. The ULS is computed by
applying a unit load at every degree of freedom on the structure (or
summing the rows of the flexibility matrix). This approach was
chosen because it incorporates all the flexibility coefficients in the
flexibility matrix.

To reduce these deflected shapes further into a single index,
a simple percentage error function was used. The error function was
calculated at all degrees of freedom except boundary locations,
because small absolute errors in these locations result in large error
percentages and can skew the results. The resulting index is the UEI
and is defined in Eq. (10)

v 1) = ()]
2 o)

n

% 100

for3<k<9; n=15

(10)

where (6), = deflection calculated from modal flexibility at degree
of freedom k under uniform load; (& )Z = deflection calculated from
pseudomodal flexibility at degree of freedom k under uniform load;
and n = total number of degrees of freedom in the system excluding
the boundaries.

Results and Discussion of Uncertainty Propagation

The full factorial experimental design included 1,296 different un-
certainty paths. For a subset of these paths, the UEI was computed
by comparing the ULS determined from MIMO impact testing with
the pseudo-ULS determined from the OMA. Figs. 7-12 provide
a portion of these results. A more comprehensive set of the results of
this study were reported in Ciloglu (2006).

The large UEI observed for some of the uncertainty paths
(Figs. 7-12) are a result of the various couplings of uncertainty that
result in critical modes being missed. In many of these cases, the
methods were able to properly capture a majority of the modes of
the physical model; however, the modes they missed (for example,
lower bending modes) contributed greatly to the computation of
modal flexibility and, thus, large UEIs were observed.

Overall, the results shown in Figs. 7-12 serve to illustrate the
potential for various uncertainties (which enter the OMA process at
different points) to couple and significantly bias the results. The
reader is cautioned, however, that this study focused on a specific
physical model and, so although some of the trends apparent in the
results provide insight into the magnitude and presence of such
uncertainty, it is not appropriate to consider that they are gener-
alizable. This limitation notwithstanding, these results provide
a glimpse of the magnitude of errors that may result from uncertainty
coupling and provide a means to begin to examine this phenomenon.

Modal Identification Method

Figs. 7-12 indicate that there are significant differences in the ro-
bustness of the three modal identification methods employed. In
general, the SSI method appears to be the most robust with UEIs
typically below 20%. In most cases, the CMIF method provided results
with UIEs less than 20% as well; however, it did display a significant
sensitivity to certain data processing approaches (such as exponential
windowing; Fig. 8), which resulted in significant bias errors. In general,
the PTD method was the least robust method and displayed significant
bias errors (UIEs on the order 100%) for several different uncertainty
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Fig. 7. (a) Uncertainty path and (b) UEI (%) as a result of averaging method selection
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Fig. 8. (a) Uncertainty path and (b) UEI (%) as a result of inclusion of exponential windowing
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Fig. 9. (a) Uncertainty path and (b) UEI (%) as a result of incorporation of signal modeling step

paths. In some cases, however, such as when coupled with Welch’s
method (Fig. 7), the PTD method outperformed the CMIF method.

Data Processing

The various data processing methods included in the study also
displayed the potential to significantly bias the results. Fig. 7 shows
that although the RD method performed well when coupled with the
CMIF and SSI methods, this approach resulted in large bias errors
when coupled with the PTD method under low excitation levels with
low signal-to-noise ratios. In addition, Welch’s method performed

well when coupled with PTD and SSI, but resulted in a UEI of 30%
when used in conjunction with the CMIF method. As shown in Fig.
10, for the experimental program conducted, the block size used
within the averaging process did not have a significant influence on
the accuracy of the results.

As can be seen through a comparison of Figs. 7 and 8, the use of
exponential windowing to process the p-IRFs actually caused sharp
increases in the UEIs for both CMIF and PTD (in the case of cor-
relation functions developed through the correlogram method).
In contrast, the use of exponential windowing did not greatly influence
the results obtained from the SSI method. As a result, it appears that
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Fig. 11. (a) Uncertainty path and (b) UEI (%) as a result of using different excitation cases with steel roller boundary conditions

both the CMIF and PTD methods are sensitive to the addition of nu-
merical damping to the time series data, whereas the SSI method is not.

Comparing Figs. 7 and 9, it is apparent that the use of Prony’s
method to estimate the spectrum of the p-IRF provided better results
than the FFT method. However, this approach was not able to
mitigate the large UEISs observed in cases where the RD method was
used in conjunction with the PTD method.

Excitation and Boundary Conditions

The influence of different excitation approaches can be seen in Fig. 11.
For the CMIF and SSI methods, all excitation approaches, except

for the localized manual tapping, produced low UEIs. Localized
manual tapping input was expected to provide poor results by design
because of using a stationary input point on the superstructure where
the input would not excite certain modes. One interesting observation
was that although the PTD method performed poorly for all excitation
cases with low signal-to-noise ratios, it yielded equal or better results
than other algorithms when excitation levels and signal-to-noise ratios
were high. Similarly, in the case of uncertain boundary conditions, the
PTD method performed the best for the case in which the CMIF and
SSI methods performed the worst. As is apparent from Fig. 12, the
CMIF and SSI methods performed well for all boundary conditions,
except the one that included added mass at the supports. This
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Fig. 13. Comparison of ULS by different analysts

particular boundary condition resulted in the best performance of the
PTD method.

Investigation of Subjectivity

To examine the influence of different operators on the results of
this study, all of the signal processing and modal parameter identi-
fication activities were duplicated by a separate analyst. The results
shown in Figs. 7-12 represent results that were consistent between
these two users. However, throughout this study, there were
instances where the users did not arrive at the same results, even
using the same modal identification software and data sets.
Specifically, Fig. 13 shows the ULS results for two different users
compared with the results from the MIMO impact test. In this case,
the results from User 2 agree well with the ground truth measure,

whereas the results from User 1 do not. The differences between
these results were because of the fact that User 1 failed to capture the
first, sixth, seventh, tenth, and eleventh modes of the physical model.
This error was traced to differences in signal truncation and ma-
nipulation methods, such as slight differences in the implementation
of RD averaging and exponential window application, as well as the
choice of frequency band of interest and selection of stable peaks.
Although these were corrected in this study, this example is presented
to illustrate the significant influence of seemingly subtle (as opposed
to blatant) human errors.

Investigation of Aleatory Uncertainty

Finally, to examine the influence and magnitude of aleatory un-
certainty in this study, the physical model was excited under the
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Fig. 14. Variation of ambient test results on the same structure using the same path

same ambient vibration using the shaker input five consecutive
times. The results were processed by a single analyst using identical
procedures from start to finish. Although the results of consecutive
datasets were consistent among themselves, the average error be-
tween impact test data and repeated consecutive ambient test results
produced UEIs as high as 19% (Fig. 14). Although such errors are
not negligible, they are far more benign in nature than those dis-
played in Figs. 7-12.

Conclusions

The research reported herein aimed to demonstrate the influence
of uncertainty coupling throughout Step 3 (experimentation using
OMA) and Step 4 (data processing and feature extraction) of the
St-Id process when OMA is used as the experimentation tool.
This was accomplished through carrying out a full factorial
experimental program with primary test variables of excitation,
boundary conditions, data processing methods, and modal param-
eter identification methods. The results indicated that proven and
accepted data pre- and postprocessing techniques can significantly
bias results when used in certain combinations under different
structural and excitation conditions. The reader is cautioned, how-
ever, that this study focused on a specific physical model and, so
although some of the trends apparent in the results provide insight
into the magnitude and presence of such uncertainty, it is not ap-
propriate to claim that they can be generalized. There are many
additional sources of uncertainty that impact applications of OMA to
constructed systems that were not included in this study, some of
which may prove, in certain circumstances, to cause greater bias
errors than those observed and reported in this study. These limi-
tations notwithstanding, the modal flexibility based UEI framework
presented in this paper provides a generally applicable approach
to benchmark the reliability of OMA results. The following spe-

cific conclusions from this study are drawn.
1. Based on the results of this study, the SSI method proved to
be the most robust modal identification approach followed

by the CMIF method. The PTD method showed the highest
sensitivity to excitation levels and various preprocessing
methods.

2. The use of exponential windows to process p-IRFs had a neg-
ative impact on results for both the CMIF and PTD methods.
The SSI method did not appear sensitive to the addition of
numerical damping that occurs in this windowing process.

3. The correlogram method of computing correlation functions
consistently gave better results than both the RD method and
Welch’s method.

4. Seemingly subtle human errors and the remaining subjectivity
associated with OMA can significantly bias results. To mit-
igate this issue, it is recommended that applications of OMA
employ multiple analysts.

5. The random uncertainty associated with the OMA of the
physical model resulted in UEISs of up to 19%. Although such
errors are not negligible, they are less influential in nature than
those caused by epistemic sources of uncertainty.

6. The developed flexibility-based ground truth measure, termed
UEL is nothing more than a simple average error function; it is
used here to demonstrate how seemingly benign variations in
modal results influence the structure’s perceived flexibility.
Most importantly, translating the variations of parameters in
modal space into variations in flexibility terms provides a rational
approach to distinguish between cases where important modes
are missed or incorrectly identified and cases where modes that
do not appreciably contribute to modal flexibility are missed.

7. Given the demonstrated potential for the coupling of various
uncertainties, it is recommended that, where possible, OMA
results (especially in the case of long-term monitoring) be
compared with ground truth measures to assess their reliabil-
ity. In cases where this is not possible, it is recommended that
arrays of both data processing and modal parameter identifi-
cation methods be employed by different analysts.

Although there have been many research studies on the impacts
and mitigation of random uncertainty in various steps of St-Id, this
is the first time the impacts of epistemic uncertainty have been
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systematically explored and quantified to the authors’ knowledge.
It is recommended that additional studies into the impact of
epistemic uncertainty on OMA, as well as all of the steps of St-Id be
investigated.
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