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A B S T R A C T   

Tuned viscous mass dampers (TVMDs) are promising inerter-based devices for vibration control of civil struc
tures. Previous studies chiefly focused on the vibration control performance of TVMDs for a main structure 
subjected to seismic excitations. In this study, the application of TVMD isolation systems for equipment-induced 
vibration control of industrial buildings is explored. A closed-form solution for optimum design parameters of 
TVMD isolation systems is proposed based on the fixed-point theory. The design procedure of TVMD isolation 
systems is provided to balance the vibrations of the main structure and equipment. The validation of TVMD 
isolation systems is conducted based on a real industrial building. The numerical analysis results show that 
TVMD isolation systems optimally designed using the proposed closed-form solution are highly effective in 
controlling the acceleration and displacement responses of both the main structure and equipment. Moreover, 
the results confirm that TVMD isolation systems can be used as an effective control strategy to solve the comfort 
problem of industrial buildings induced by rotary mechanical equipment. This is because the inner degree of 
freedom in a TVMD is amplified when the TVMD is tuned to resonate with the main structure, which provides a 
significantly improved energy-dissipation ability of the TVMD isolation system.   

1. Introduction 

Structural control plays a crucial role in the design and retrofitting of 
civil structures to avoid damage from undesired vibrations caused by 
external excitations [1–3]. In particular, a large number of passive 
control devices have been developed and installed to mitigate undesired 
vibrations in civil structures [4]. Owing to the significant mass ampli
fication effects of inerter elements, inerter-based devices are widely 
accepted as effective passive control devices [5]. In recent years, per
formance testing of inerter-based devices has been conducted in many 
fields, such as dynamic vibration absorbers in mechanical systems [6,7], 
buildings [8–15], bridges [16], storage tanks [17–19], wind turbine 
towers [20], platforms [21], and isolation systems [22]. Isolation sys
tems not only prolong the natural period of the main structure but also 
dissipate input energy [23]. Hence, the seismic response of isolated 
structures can be significantly suppressed [24]. However, isolation 
systems may undergo large displacements under severe seismic excita
tions [25]. To reduce the displacement and improve the performance of 

isolation systems, inerter-based isolation systems that combine isolation 
systems with inerter-based devices provide attractive alternatives to 
conventional isolation systems [26–28]. 

The aforementioned inerter element is a two-terminal element that 
provides an inertial force proportional to the relative acceleration of 
both terminals [29–34]. In civil engineering, the bud of a two-terminal 
inerter element is a liquid mass pump developed by Kawamata [35] in 
the 1970 s. Subsequently, Ikago and his co-workers [36,37] developed a 
tuned viscous mass damper (TVMD), a promising inerter-based device 
for vibration control of civil structures, to make the most of mass 
amplification and damping enhancement effect for the first time. As is 
common for tuned-type control devices, the TVMD control performance 
is significantly influenced by its design parameters. Following the well- 
known fixed-point theory [38,39], Ikago and Saito [36] proposed a 
closed-form solution to determine the TVMD design parameters. Huang 
and Hua [40] investigated the optimal design of the TVMD with linear 
and nonlinear viscous damping properties and found that a nonlinear 
TVMD can achieve comparable or even slightly better control 
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performance than a linear TVMD. Considering the stochastic charac
teristics of seismic excitations, Pan and Zhang [41] developed a demand- 
based optimal design method for TVMDs to overcome some deficiencies 
of the fixed-point theory. To ensure that the control effectiveness of 
TVMDs becomes superior to that of the viscous damper with the same 
damping coefficient, He and Tan [42,43] proposed closed-form solu
tions of optimum design parameters of TVMDs based on the effective 
damping ratio enhancement effect. Concerning the nonstationary 
impulsive characteristics of seismic excitations, Su and Bian [44] 
developed an impulsive resistant optimization design method for 
TVMDs based on stability maximization. In addition, many excellent 
studies have been conducted on the development of inerter-based 
isolation systems for vibration mitigation of main structures subjected 
to seismic excitations [22–28,45]. The closest research to this study was 
carried out by Li and Chen [46], who focused on investigating the 
optimal design and performance evaluation of TVMD isolation systems 
under the white-noise seismic excitation hypothesis. 

However, for industrial buildings, undesired vibration problems may 
be induced by rotary mechanical equipment (Fig. 1), which is distin
guished from seismic excitation. Moreover, some industrial buildings 
have strict requirements for equipment vibration [47–50]. This suggests 
that the application of conventional isolation systems may not be 
appropriate considering their large displacements. Therefore, to provide 
an improved isolation control scheme, it is valuable to explore the 
application of TVMD isolation systems for equipment-induced vibration 
control of industrial buildings. In this study, considering that the 
external force is harmonic, a closed-form solution for optimum design 
parameters of TVMD isolation systems is proposed. This solution is 
theoretically based on the fixed-point theory. The design procedure of 
TVMD isolation systems is provided to balance the vibrations of the 
main structure and equipment. The validation of TVMD isolation 

systems is conducted based on a real industrial building. The numerical 
analysis results confirm that TVMD isolation systems can be used as an 
effective control strategy to solve the comfort problem of industrial 
buildings induced by rotary mechanical equipment. 

2. Theoretical analysis 

In this section, the undesired vibration problem induced by rotary 
mechanical equipment in industrial buildings is described. A classical 
analytical model for a single-degree-of-freedom (SDOF) main structure 
coupled with rotary mechanical equipment is provided. Moreover, an 
analytical model of TVMD isolation systems is established. 

2.1. Structure coupled with rotary mechanical equipment 

As is common in rotary mechanical equipment, centrifugal force 
occurs when the equipment operates with angular velocity ω, as shown 
in Fig. 1. Let f (t) and h (t) denote the vertical and horizontal components 
of centrifugal force, respectively. In this study, the stiffness of the main 
structure in the vertical direction is expected to be smaller than that in 
the horizontal direction. Furthermore, the main structure and equip
ment are more likely to resonate in the vertical direction, which may 
cause undesired comfort problems for the main structure and low 
working efficiency of the equipment. Therefore, only the vertical vi
bration caused by f (t) is considered in this study. 

Fig. 1 shows the main structure coupled with rotary mechanical 
equipment, where m1, k1, and c1 are the mass, stiffness, and damping of 
the main structure, respectively; me is the mass of the equipment; and x1 
is the displacement of the main structure relative to the ground. 
Assuming that the vertical component of the centrifugal force is har
monic (i.e., f(T) = FeiωT), the governing equations of the system motion 

Fig. 1. Schematic of an SDOF main structure coupled with rotary mechanical equipment.  

Fig. 2. Analytical model of TVMD isolation system.  
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can be written as 

(m1 + me)ẍ1 + c1ẋ1 + k1x1 = Feiωt. (1) 

The equipment is assumed to be fixed on the main structure, as 
shown in Fig. 1, and the acceleration dynamic amplification factor 
(DAF) for the noncontrolled main structure and equipment is obtained 
via the Fourier transform as follows [6]: 

H1,0(λ) =
m1U1

F
=

λ2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅[
1 − (1 + μ)λ2 ]2

+ (2ζ1λ)2
√ , (2) 

where U1 is the acceleration amplitude of the main structure; λ = ω/

ω1 is the excitation frequency ratio; ω1 is the frequency of the main 
structure; ξ1 is the damping ratio of the main structure; and μ denotes the 
equipment mass ratio. Note that although in this study we only inves
tigated vertical vibration, relevant methods can still be employed for 
horizontal vibration control of the system by substituting the horizontal 
parameters for vertical ones (e.g., replacing f (t) with h (t)). 

2.2. Analytical model of TVMD isolation system 

In this study, the improved performance of an isolation system pro
vided by a TVMD is investigated. The isolation system coupled with the 
TVMD jointly constitutes the TVMD isolation system, as illustrated in 
Fig. 2. Herein, the vertical vibration damping of the equipment is ex
pected to be provided by the TVMD, because the vertical equivalent 
damping of the isolator is assumed to be very small and can be ignored. 
Assuming that ke denotes the vertical equivalent stiffness of the isolator; 
mT, kT, and cT represent the TVMD inertance, stiffness, and damping 
coefficient, respectively; and xT denotes the deformation of the TVMD 
inerter element. The TVMD isolation system governing equations of 
motion can be obtained as follows: 
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(3) 

By introducing the TVMD mass ratio β = mT/m1, frequency ratio γ =
ωT/ω1, damping ratio ξT = cT/(2m1ω1), and isolator frequency ratio α =

ωe/ω1, as presented in Table 1, Eq. (3) can be rewritten as 
⎡
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Similarly, let Ue denote the acceleration amplitude of the equipment, 
the acceleration DAF for the main structure and equipment controlled by 
the TVMD isolation system can be respectively expressed as. 

H1,TVMD(λ)=
m1U1

F
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
1 + B2

1

D2 + E2

√

andHe,TVMD(λ)=
m1Ue

F
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
e +B2

e

D2 + E2

√

, (5)  

where 

Table 1 
Notation.   

Notation Definition 

Main structure m1 Mass 
k1 Stiffness coefficient 
c1 Damping coefficient 

ω1 =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
k1/m1

√ Frequency 
ξ1 = c1/(2m1ω1) Damping ratio  

Excitation f(T) = FeiωT Excitation force; vertical component of the centrifugal force 
ω Angular velocity of equipment; excitation frequency 

λ = ω/ω1 Excitation frequency ratio  

TVMD isolation system me Mass of the equipment 
ke Vertical equivalent stiffness coefficient of the isolator 

ωe =
̅̅̅̅̅̅̅̅̅̅̅̅̅
ke/me

√ Frequency of the isolator 
μ = me/m1 Equipment mass ratio 
α = ωe/ω1 Frequency ratio of the isolator 

mT TVMD inertance 
kT TVMD stiffness coefficient 
cT TVMD damping coefficient 

ωT =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
kT/mT

√ TVMD frequency 
ξT = cT/(2m1ω1) TVMD damping ratio 

β = mT/m1 TVMD mass ratio 
γ = ωT/ω1 TVMD frequency ratio  

Acceleration dynamic amplification factor (DAF) H1,0 Noncontrolled main structure and equipment 
H1, TVMD Main structure controlled by the TVMD isolation system 
He, TVMD Equipment controlled by the TVMD isolation system 

Response mitigation ratio (RMR) 
J1 =

⃒
⃒H1, TVMD

⃒
⃒
max⃒

⃒H1,0
⃒
⃒
max 

Main structure 

Je =

⃒
⃒He, TVMD

⃒
⃒
max⃒

⃒H1,0
⃒
⃒
max  

Equipment  
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⎧
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)]
λ+2μ(ζT +βζ1)λ5

− [2μζT
(
μα2 + α2 + βγ2 + 1

)
+ 2μζ1

(
α2β + βγ2)+2βγ2(μζ1 +ζT)

]
λ3

.

(6)  

3. Optimal design of TVMD isolation system 

In this section, a closed-form solution for optimum design parame
ters of TVMD isolation systems is proposed. It is theoretically based on 
the fixed-point theory. Detailed parametric studies are carried out to 
verify the correctness of the proposed closed-form solution and inves
tigate the crucial connection between the parameters of TVMD isolation 
systems and control effectiveness. Furthermore, the design procedure is 
summarized to provide a viable method for balancing the vibrations of 
the main structure and equipment. 

3.1. Closed-form solution for optimum parameters 

Assuming that the damping of the main structure can be ignored (i.e., 
ξ1 = 0), the acceleration DAF for the main structure can be simplified as 

H1,TVMD(λ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ã
2
1 + B̃

2
1ζ2

T

D̃
2
+ Ẽ

2
ζ2

T

√
√
√
√ , (7) 

where 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ã1 = − μα2βγ2λ2 +
(
μα2β + β2γ2)λ4

B̃1 = − 2
(
μα2 + βγ2)λ3

D̃ = μα2βγ2 −
[
βγ2( β + μ + μ2α2 + μα2)+ μα2β

]
λ2

+
[
μβ(1 + γ2)+

(
β2γ2 + μα2β

)
(1 + μ)

]
λ4 − μβλ6

Ẽ =
[
2βγ2 + 2μα2]λ + 2μλ5 −

[
2μ

(
μα2 + α2 + βγ2 + 1

)
+ 2βγ2 ]λ3

.

(8) 

According to the fixed-point theory, the invariant points of 
H1, TVMD(λ) are independent of ξT but are a function of λ. Therefore, it can 
substitute ξT = 0 and ξT = ∞ into Eqs. (7) and (8) to obtain 

Ã1

D̃
= −

B̃1

Ẽ
. (9) 

Thus, 

a3
(
λ2)3

+ a2
(
λ2)2

+ a1λ2 + a0 = 0, (10) 

where 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a3 =4μ2α2β+4μβ2γ2

a2 =− 2β

[
2μ2(μ+1)α4+2μ2( 1+γ2+2βγ2)α2

+4μβγ2α2+2β2γ4(μ+1)+μβγ2( 2+γ2)
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a1 =2β
[
2μ2( 1+γ2 +μγ2)α4 +2μβγ4(μ+1)α2 +

(
2μγ2α2 +βγ4)(μ+2β)
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a0 =− 4μα2( μβγ2α2+β2γ4)

.

(11) 

This implies that H1,TVMD(λ) has three invariant points corresponding 
to the three real roots (i.e., λ2

P, λ2
Q, and λ2

R presented in Fig. 3) of Eq. (10), 
which can be expressed as 

λ2
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where 

Δ0 =
− 1 +

̅̅̅̅̅̅̅
− 3

√

2
,Δ1 =

27a2
3a0 − 9a3a2a1 + 2a3

2

27a3
3

,Δ2 =
3a3a1 − a2

2

3a2
3

. (13) 

The optimal condition yields[42] 
⃒
⃒H1,TVMD(λP)

⃒
⃒ =

⃒
⃒H1,TVMD(λQ)

⃒
⃒ =

⃒
⃒H1,TVMD(λR)

⃒
⃒. (14) 

By solving Eq. (14), the closed-form solution for optimum values of α, 
β, and γ can be expressed as 

αopt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

2μ + 1

√

, βopt =
2μ2

(2μ + 1)2, γopt =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2μ + 1

√
. (15) 

Substituting Eq. (15) into Eq. (12) we obtain 

λ2
P = 1+ μ −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ(2 + μ)

√
, λ2

Q = 1, λ2
R = 1+ μ+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μ(2 + μ)

√
. (16) 

To ensure that H1, TVMD(λ) achieves the maximum value at the three 
invariant points, the damping ratio of the TVMD isolation system should 
yield. 

Fig. 3. Acceleration DAF of the undamped main structure for different values of ξT and μ = 0.1.
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(a) Structure (b) Equipment

Fig. 4. Analysis results of RMR for the damped main structure and equipment when 0.01 ⩽ μ ⩽ 10 and 0.1% ⩽ ξ1 ⩽ 10%. (a) Structure and (b) equipment.  

START

Structural performance demand

Noncontrolled structural and 
equipment performance

Determine structural target RMR J1
T

Equipment performance demand
Determine equipment target RMR JeT

Determine equipment mass ratio μ

Optimal design of TVMD isolation system 
by the proposed closed-form solution in 

Equations (15) and (18)
(calculate αopt , βopt, γopt, and ζTopt)

Performance 
verification

J1< J1
T and J < JeT

END
Yes

μ+Δμ

No

Fig. 5. Flowchart of the TVMD isolation system design procedure.  

Fig. 6. Illustration of the numerical model.  
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∂
{⃒
⃒H1,TVMD(λ)

⃒
⃒
}2

∂λ2

⃒
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⃒
⃒

λ2 = λ2
P

,
∂
{⃒
⃒H1,TVMD(λ)

⃒
⃒
}2

∂λ2

⃒
⃒
⃒
⃒
⃒

λ2 = λ2
Q
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∂
{⃒
⃒H1,TVMD(λ)

⃒
⃒
}2

∂λ2

⃒
⃒
⃒
⃒
⃒

λ2 = λ2
R

.

(17) 

Combining Equations (16) and (17), the closed-form solution for 
optimum ξT can be expressed as 

ζTopt =

̅̅̅̅̅̅̅
2μ5

√

4μ2 + 4μ + 1
. (18) 

According to the optimum parameters of the TVMD isolation system, 
and substituting Eqs. (15) and (18) into Eq. (7), the maximum value of 
H1, TVMD(λ) at the three invariant points is expressed as 

⃒
⃒H1,TVMD

⃒
⃒

max =
1
μ. (19) 

Clearly, the control effectiveness of the TVMD isolation system for 
the undamped main structure is negatively related to the equipment 
mass ratio μ, that is, the TVMD isolation system becomes more effective 
as μ increases. 

3.2. Parametric study 

It is known that all acceleration DAF H1, TVMD(λ) curves of the un
damped main structure for different values of the damping ratio ξT will 
pass the three invariant points (i.e., P, Q, and R), which are also the 
peaks of H1, TVMD(λ) if the TVMD isolation system is optimally designed 
using the fixed-point theory. Considering that the equipment mass ratio 
μ is 0.1, H1, TVMD(λ) of the undamped main structure for different values 
of ξT can be obtained, as shown in Fig. 3. Note that H1, TVMD(λ) achieves 
its maximum value at the three invariant points. This means that the 
closed-form solution for optimum parameters of TVMD isolation systems 
proposed in Section 3.1 satisfies the requirements of the fixed-point 
theory, which demonstrates the correctness of the proposed solution. 
Compared to the acceleration DAF H1,0(λ) for a noncontrolled main 
structure, the maximum value of H1, TVMD(λ) is extremely suppressed 
near the resonance region when the TVMD isolation system is optimally 
designed. Notably, the TVMD isolation system is expected to control the 
response of the main structures near the resonance region. Beyond the 
resonance region, the TVMD isolation system shows weak or negative 
control effectiveness. Therefore, the reduction in the maximum value of 
the acceleration DAF is considered more appropriate as a performance 
index to evaluate the control effectiveness of the TVMD isolation system. 

Note that the maximum value of the acceleration DAF for the main 
structure should be minimized when the TVMD isolation system is 
optimally designed using the fixed-point theory. To demonstrate the 
control effectiveness of the optimally designed TVMD isolation system, 
the response mitigation ratio (RMR) can be defined as. 

J1 =

⃒
⃒H1,TVMD

⃒
⃒

max⃒
⃒H1,0

⃒
⃒

max

and Je =

⃒
⃒He,TVMD

⃒
⃒

max⃒
⃒H1,0

⃒
⃒

max

, (20) 

Table 2 
Model parameters.  

Main structure Excitation force f(T) = FeiωT 

Mass m1 (ton) 90.30 Amplitude F (kN) 14.90 
Frequency ω1 (Hz) 16.67 Frequency ω (Hz) 16.41 
Damping ratio ξ1 0.20% Frequency ratio λ 0.98  

Table 3 
Design results of TVMD and conventional isolation systems.  

Parameters TVMD isolation systems Conventional isolation systems 

Case 1 Case 2 Case 3 Case 1a Case 2a Case 3a 

me(ton) 3.07 9.03 27.09 3.07 9.03 27.09 
μ 0.034 0.100 0.300 0.034 0.100 0.300 
α 0.9676 0.9129 0.7906 0.9676 0.9129 0.7906 
β 0.0020 0.0139 0.0703 – – – 
γ 1.0334 1.0954 1.2649 – – – 

ξT 2.64 × 10-4 3.11 × 10-3 2.72 × 10-2 2.64 × 10-4 3.11 × 10-3 2.72 × 10-2 

ke(kN/m) 3.15 × 104 8.26 × 104 1.86 × 105 3.15 × 104 8.26 ×104 1.86 × 105 

mT(kg) 183.03 1254.17 6349.22 – – – 
kT(kN/m) 2.14 × 103 1.65 × 104 1.11 × 105 – – – 

cT or ce (kN⋅s/m) 4.50 58.75 512.12 4.50 58.75 512.12  

(a) Structure (b) Equipment

Fig. 7. Comparison results of acceleration DAF for the main structure and equipment. (a) Structure and (b) equipment.  
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where J1 and Je denote the RMR for the main structure and equip
ment controlled by the TVMD isolation system, respectively. Clearly, the 
TVMD isolation system shows positive control effectiveness for the main 
structure and equipment only if J1 and Je are less than one. 

As shown in Fig. 4, J1 and Je are positively related to μ, that is, 

increasing the equipment mass can improve the effectiveness of the 
TVMD isolation system in terms of the acceleration response of both the 
main structure and equipment. Furthermore, J1 and Je are negatively 
related to the structural damping ratio ξ1. This implies that increasing 
the damping ratio of the main structure weakens the control 

(b) Equipment

Fig. 8. Time-history analysis results of acceleration responses of the main structure and equipment. (a) Structure and (b) equipment.  

Fig. 9. Time-history analysis results of displacement responses of the main structure.  

(a) Isolator (b) TVMD (c) Dashpot

Fig. 10. The hysteretic curve of TVMD isolation systems. (a) Isolator, (b) TVMD, and (c) dashpot.  
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effectiveness of the TVMD isolation system. In the case of a low-damping 
main structure (e.g., ξ1 ⩽ 1.0%), the TVMD isolation system shows 
positive control effectiveness for both the main structure and equipment 
when μ ⩾ 0.1. Additionally, the required value of μ increases to main
tain this situation with an increment of ξ1. Therefore, it is possible to 
balance the control effectiveness of the TVMD isolation system for the 
acceleration response of the main structure and equipment by adjusting 
the equipment mass ratio μ. 

3.3. Design procedure 

As presented in Fig. 5, the design procedure of TVMD isolation sys
tems is provided to balance the vibrations of the main structure and 
equipment. According to the performance demand (e.g., the specified 
restriction of maximum acceleration response), the target RMR for the 
main structure and equipment can be determined as JT

1 and JT
e , respec

tively. A TVMD isolation system can be optimally designed using the 
proposed closed-form solution provided that the equipment mass ratio μ 
is predetermined in advance. If the TVMD isolation system fails the 
performance verification, as discussed in Section 3.2, a supplemental 
mass (corresponding to the mass ratio Δμ) should be added to the 
equipment to enhance the control effectiveness. Following the above 
procedure, the key point of the design of TVMD isolation systems is to 
ensure that the vibrations of both the main structure and equipment 
satisfy the restrictions. 

4. Application and validation of TVMD isolation system 

In the previous sections, TVMD isolation systems were investigated 
via theoretical analysis. In this section, the application and validation of 
a TVMD isolation system based on a real industrial building are 
described. As illustrated in Fig. 6, an industrial building is prepared as a 
barrel mixer building for an ironmaking plant. Based on a preliminary 
survey, it is concluded that the comfort problem of the floor for this 
industrial building is induced by rotary mechanical equipment whose 
excitation frequency is in the resonance region. Therefore, the TVMD 
isolation system is supposed to be effective in controlling the vibrations 
of both the main structure and equipment. Herein, resonance modal 
parameters of the main structure are set as listed in Table 2. 

To obtain different performance levels, Table 3 lists three TVMD 
isolation systems designed using the proposed closed-form solution, in 
which the equipment mass ratio μ is presented in ascending order 
(corresponding Cases 1, 2, and 3). To demonstrate the superior control 
performance of TVMD isolation systems over that of conventional 
isolation systems, three conventional isolation systems (corresponding 
Cases 1a, 2a, and 3a) are prepared in Table 3. The analytical model for 
the conventional isolation system is provided in Appendix A. 

Fig. 7 shows comparison results of acceleration DAF for the main 

structure and equipment. It is confirmed that TVMD isolation systems 
are effective in controlling the maximum response of both the main 
structure and equipment near the resonance region. The effective region 
becomes larger for TVMD isolation systems with increasing equipment 
mass ratio μ. Three peaks of acceleration DAF for the main structure are 
very close (the difference is within 1%) in different cases, indicating that 
the proposed closed-form solution can still provide a good estimate for 
optimum design parameters of TVMD isolation systems even if the fixed- 
point theory no longer holds for the damped main structure (i. 
e., ξ1 ∕= 0). It is observed that TVMD isolation systems are more effec
tive in controlling the maximum response of both the main structure and 
equipment compared to conventional isolation systems. However, 
TVMD isolation systems are not always better than conventional isola
tion systems throughout the frequency domain. For example, conven
tional isolation systems have a slightly better control performance for 
the main structure than TVMD isolation systems when λ = 0.98 in the 
case of equipment mass ratios are 0.100 and 0.300. Therefore, the 
application of tuned viscous mass damper isolation systems for 
equipment-induced vibration control of industrial buildings is particu
larly recommended under the evaluation system of the fixed-point the
ory where the maximum value of acceleration DAF for the main 
structure and equipment is the primary control objective. 

To further investigate the control effectiveness of the TVMD isolation 
system, a time-history analysis is conducted according to the parameters 
listed in Tables 2 and 3. Fig. 8 shows the results of this time-history 
analysis in terms of the acceleration responses of the main structure 
and equipment. It is observed that the maximum acceleration response 
of the noncontrolled main structure is 35.66 m/s2, which is suppressed 
by 96.81%, 98.07%, and 98.86% for Cases 1, 2, and 3, respectively. The 
TVMD shows vibration mitigation ratios of 87.30 %, 95.57 %, and 
98.50% for the maximum acceleration response of the equipment. The 
control effectiveness of TVMD isolation systems for the main structure is 
slightly better than that of equipment. This is because the closed-form 
solution for optimum design parameters of TVMD isolation systems is 
proposed based on the acceleration DAF of the main structure. It can be 
concluded that TVMD isolation systems optimally designed using the 
proposed closed-form solution are highly effective in controlling the 
acceleration response of both the main structure and equipment. Thus, 
TVMD isolation systems can be considered as an effective control 
strategy to solve the comfort problem of industrial buildings induced by 
rotary mechanical equipment. 

Fig. 9 presents the time-history analysis results of displacement re
sponses of the main structure. It is seen that the maximum displacement 
response of the noncontrolled main structure is 3.35 mm, which is 
reduced by 96.81%, 98.07%, and 98.87% for Cases 1, 2, and 3, 
respectively. Concerning equipment, in combination with Fig. 10(a), the 
corresponding maximum displacement reductions are 87.91%, 95.13%, 
and 98.08% for Cases 1, 2, and 3, respectively. Therefore, TVMD 

Fig. A1. Analytical model for the conventional isolation system.  
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isolation systems optimally designed using the proposed closed-form 
solution are also highly effective in controlling the displacement 
response of both the main structure and equipment. TVMD isolation 
systems become more effective with increasing equipment mass ratio μ, 
which coincides with Eq. (19). However, the displacement response is 
relatively small compared with the acceleration response, which rarely 
causes safety problems in industrial buildings. Thus, the comfort prob
lem induced by the acceleration response is the primary control objec
tive of the TVMD isolation system in this study. 

As observed in Fig. 10, the deformation of the TVMD is amplified by 
factors of 3.87, 2.39, and 1.59 for Cases 1, 2, and 3, respectively, 
compared to that of the isolator. This reveals that the deformation of the 
inner degree of freedom in the TVMD is amplified when the TVMD is 
tuned to resonate with the main structure (i.e., frequency ratio γ close to 
1.0), which can be referred to as the damping enhancement (DE) effect 
[51]. As γ increases away from 1.0 as listed in Table 3, the DE effect of 
the TVMD becomes less remarkable. Therefore, the equipment mass 
ratio μ as well as the corresponding frequency ratio γ can be adjusted in 
practical applications to ensure that TVMD isolation systems have an 
improved energy dissipation ability. 

From the above analysis results, it can be concluded that TVMD 
isolation systems optimally designed using the proposed closed-form 
solution are effective in controlling the acceleration and displacement 
responses of both the main structure and equipment. TVMD isolation 
systems can be considered as an effective control strategy to solve the 
comfort problem of industrial buildings induced by rotary mechanical 
equipment. This is because the inner degree of freedom in a TVMD is 
amplified when the TVMD is tuned to resonate with the main structure, 
which provides a significantly improved energy-dissipation ability of the 
TVMD isolation system. 

5. Conclusions 

In this study, the application of TVMD isolation systems for 
equipment-induced vibration control in industrial buildings is investi
gated. A closed-form solution for optimum design parameters of TVMD 
isolation systems is proposed. Validation of a TVMD isolation system is 
conducted on a real industrial building. The main conclusions of this 
study can be summarized as follows:  

1) A closed-form solution for optimum design parameters of TVMD 
isolation systems based on the fixed-point theory is proposed. For a 
damped main structure, the proposed closed-form solution can still 

provide a good estimate for optimum design parameters of TVMD 
isolation systems, even if the fixed-point theory no longer holds.  

2) TVMD isolation systems are expected to control the response of the 
main structures near the resonance region. Beyond this region, 
TVMD isolation systems show weak or negative control effectiveness.  

3) The design procedure of TVMD isolation systems is provided to 
balance the vibrations of the main structure and equipment. Opti
mally designed TVMD isolation systems are effective in controlling 
the acceleration and displacement responses of both the main 
structure and equipment.  

4) TVMD isolation systems can be considered as an effective control 
strategy to solve the comfort problem of industrial buildings induced 
by rotary mechanical equipment. This is because the inner degree of 
freedom in TVMD is amplified when the TVMD is tuned to resonate 
with the main structure, which provides a significantly improved 
energy-dissipation ability of the TVMD isolation system. 

In this study, the closed-form solution for optimum design parame
ters of TVMD isolation systems is proposed based on the acceleration 
DAF for the main structure. In the future, the closed-form solution for 
optimum design parameters of TVMD isolation systems should be 
investigated based on the acceleration DAF of the equipment if the 
precision and function of the equipment are major concerns. 
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Appendix A. Analytical model for conventional isolation system 

Fig. A1 shows the analytical model for the conventional isolation system installed between the main structure and equipment. Herein, the vertical 
vibration damping of the equipment is expected to be provided by the isolator. Assuming that cT is the vertical equivalent damping of the isolator, the 
conventional isolation system governing equations of motion can be obtained as: 
[

m1 0
0 me

]{
ẍ1
ẍe

}

+

[
c1 + cT − cT
− cT cT

]{
ẋ1
ẋe

}

+

[
k1 + ke − ke
− ke ke

]{
x1
xe

}

=

{
0
F

}

eiωt (A1) 

Note that the damping of the isolator is assumed to be equal to that of TVMD for a fair performance comparison between TVMD and conventional 
isolation systems. For non-dimensional analysis, Eq. (A1) can be rewritten as 

[
1 0
0 μ

]{
ẍ1
ẍe

}

+

[
2(ζ1 + ζT)ω1 − 2ζT ω1

− 2ζT ω1 2ζT ω1

]{
ẋ1
ẋe

}

+

[ (
1 + μα2)ω2

1 − μα2ω2
1

− μα2ω2
1 μα2ω2

1

]{
x1
xe

}

=

⎧
⎨

⎩

0
F
m1

⎫
⎬

⎭
eiωt. (A2) 

Further, the acceleration DAF for the main structure and equipment controlled by the conventional isolation system can be respectively given as. 

H1,CI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
μα2λ2)2

+
(
2ζT λ3)2

Ω

√

and He,CI =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[
− (1 + μα2)λ2 + λ4 ]2

+
[
2(ζ1 + ζT)λ3 ]2

Ω

√

, (A3) 

where the denominator Ω is 
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Ω =
[
μα2 −

(
μ2α2 + μα2 + μ + 4ζ1ζT

)
λ2 + μλ4 ]2

+
[
2
(
μα2ζ1 + ζT

)
λ − 2(ζT + μζT + μζ1)λ3 ]2 (A4) 

The notations in the above equations are the same as those listed in Table 1. 
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